436 research outputs found

    Searching for family-number conserving neutral gauge bosons from extra dimensions

    Full text link
    Previous studies have shown how the three generations of the Standard Model fermions can arise from a single generation in more than four dimensions, and how off-diagonal neutral couplings arise for gauge-boson Kaluza-Klein recurrences. These couplings conserve family number in the leading approximation. While an existing example, built on a spherical geometry, suggests a high compactification scale, we conjecture that the overall structure is generic, and work out possible signatures at colliders, compatible with rare decays data.Comment: 4 pages, 2 figures, jetpl.cls style, references adde

    Monte Carlo simulation of an experiment looking for radiative solar neutrino decays

    Full text link
    We analyse the possibility of detecting visible photons from a hypothetical radiative decay of solar neutrinos. Our study is focused on the simulation of such measurements during total solar eclipses and it is based on the BP2000 Standard Solar Model and on the most recent experimental information concerning the neutrino properties.Comment: 13 pages, 10 figures, accepted by Astropart. Phy

    MeV Right-handed Neutrinos and Dark Matter

    Get PDF
    We consider the possibility of having a MeV right-handed neutrino as a dark matter constituent. The initial reason for this study was the 511 keV spectral line observed by the satellite experiment INTEGRAL: could it be due to an interaction between dark matter and baryons? Independently of this, we find a number of constraints on the assumed right-handed interactions. They arise in particular from the measurements by solar neutrino experiments. We come to the conclusion that such particles interactions are possible, and could reproduce the peculiar angular distribution, but not the rate of the INTEGRAL signal. However, we stress that solar neutrino experiments are susceptible to provide further constraints in the future.Comment: 7 pages, figure 1 changed, added reference

    See-saw neutrino masses and large mixing angles in the vortex background on a sphere

    Full text link
    In the vortex background on a sphere, a single 6-dimensional fermion family gives rise to 3 zero-modes in the 4-dimensional point of view, which may explain the replication of families in the Standard Model. Previously, it had been shown that realistic hierarchical mass and mixing patterns can be reproduced for the quarks and the charged leptons. Here, we show that the addition of a single heavy 6-dimensional field that is gauge singlet, unbound to the vortex, and embedded with a bulk Majorana mass enables to generate 4D Majorana masses for the light neutrinos through the see-saw mechanism. The scheme is very predictive. The hierarchical structure of the fermion zero-modes leads automatically to an inverted pseudo-Dirac mass pattern, and always predicts one maximal angle in the neutrino see-saw matrix. It is possible to obtain a second large mixing angle from either the charged lepton or the neutrino sector, and we demonstrate that this model can fit all observed data in neutrino oscillations experiments. Also, U_{e3} is found to be of the order ~0.1.Comment: 23 pages, 1 figur

    Higgs Sector of the Minimal Left-Right Symmetric Model

    Get PDF
    We perform an exhaustive analysis of the most general Higgs sector of the minimal left-right symmetric model (MLRM). We find that the CP properties of the vacuum state are connected to the Higgs spectrum: if CP is broken spontaneously, the MLRM does not approach the Standard Model in the limit of a decoupling left-right symmetry breaking scale. Depending on the size of the CP phases scenarios with extra non-decoupling flavor-violating doublet Higgses or very light SU(2) triplet Higgses emerge, both of which are ruled out by phenomenology. For zero CP phases the non-standard Higgses decouple only if a very unnatural fine-tuning condition is fulfilled. We also discuss generalizations to a non-minimal Higgs sector.Comment: brief discussion of non-minimal Higgs sectors added, journal versio

    3-Alkoxy-4-bromothiophenes: general synthesis of monomers and regio-selective preparation of two dimers

    Get PDF
    3-Alkoxy-4-bromothiophenes were synthesized in three steps from the readily available methyl 2-carboxylate-3-hydroxythiophene and two isomers of bithiophenes based on the 3-bromo-4-methoxythiophene moiety were regio-selectively prepared. (C) 2011 Elsevier Ltd. All rights reserved

    Bound on the Dark Matter Density in the Solar System from Planetary Motions

    Get PDF
    High precision planet orbital data extracted from direct observation, spacecraft explorations and laser ranging techniques enable to put a strong constraint on the maximal dark matter density of a spherical halo centered around the Sun. The maximal density at Earth's location is of the order 10510^5 GeV/cm3{\rm GeV/cm^3} and shows only a mild dependence on the slope of the halo profile, taken between 0 and -2. This bound is somewhat better than that obtained from the perihelion precession limits.Comment: 7 pages, 1 figur

    Zero modes of six-dimensional Abelian vortices

    Full text link
    We analyze the fluctuations of Nielsen-Olesen vortices arising in the six-dimensional Abelian-Higgs model. The regular geometry generated by the defect breaks spontaneously six-dimensional Poincar\'e symmetry leading to a warped space-time with finite four-dimensional Planck mass. As a consequence, the zero mode of the spin two fluctuations of the geometry is always localized but the graviphoton fields, corresponding to spin one metric fluctuations, give rise to zero modes which are not localized either because of their behaviour at infinity or because of their behaviour near the core of the vortex. A similar situation occurs for spin zero fluctuations. Gauge field fluctuations exhibit a localized zero mode.Comment: 45 pages in Revtex style with 4 figure
    corecore