8,590 research outputs found

    Lorentz-noninvariant neutrino oscillations: model and predictions

    Full text link
    We present a three-parameter neutrino-oscillation model for three flavors of massless neutrinos with Fermi-point splitting and tri-maximal mixing angles. One of these parameters is the T-violating phase \epsilon, for which the experimental results from K2K and KamLAND appear to favor a nonzero value. In this article, we give further model predictions for neutrino oscillations. Upcoming experiments will be able to test this simple model and the general idea of Fermi-point splitting. Possible implications for proposed experiments and neutrino factories are also discussed.Comment: 22 pages, v5: final version to appear in IJMP

    The activity of supported vanadium oxide catalysts for the selective reduction of NO with ammonia

    Get PDF
    The activities of monolayer V2O5 catalysts for the selective reduction of NO with NH3 are compared with those of commercial available catalysts containing V and/or W. From steady state and pulse experiments it can be concluded that the reduction of surface sites proceeds either by NH3 + NO or by NH3 alone. The reoxidation of the reduced sites occurs by gaseous oxygen or NO. The experimental reaction stoichiometry can be explained in terms of suitable combinations of these four reactions

    Evolution of Binary Black Hole Spacetimes

    Get PDF
    We describe early success in the evolution of binary black hole spacetimes with a numerical code based on a generalization of harmonic coordinates. Indications are that with sufficient resolution this scheme is capable of evolving binary systems for enough time to extract information about the orbit, merger and gravitational waves emitted during the event. As an example we show results from the evolution of a binary composed of two equal mass, non-spinning black holes, through a single plunge-orbit, merger and ring down. The resultant black hole is estimated to be a Kerr black hole with angular momentum parameter a~0.70. At present, lack of resolution far from the binary prevents an accurate estimate of the energy emitted, though a rough calculation suggests on the order of 5% of the initial rest mass of the system is radiated as gravitational waves during the final orbit and ringdown.Comment: 4 pages, 3 figure

    The coronagraphic Modal Wavefront Sensor: a hybrid focal-plane sensor for the high-contrast imaging of circumstellar environments

    Get PDF
    The raw coronagraphic performance of current high-contrast imaging instruments is limited by the presence of a quasi-static speckle (QSS) background, resulting from instrumental non-common path errors (NCPEs). Rapid development of efficient speckle subtraction techniques in data reduction has enabled final contrasts of up to 10-6 to be obtained, however it remains preferable to eliminate the underlying NCPEs at the source. In this work we introduce the coronagraphic Modal Wavefront Sensor (cMWS), a new wavefront sensor suitable for real-time NCPE correction. This pupil-plane optic combines the apodizing phase plate coronagraph with a holographic modal wavefront sensor, to provide simultaneous coronagraphic imaging and focal-plane wavefront sensing using the science point spread function. We first characterise the baseline performance of the cMWS via idealised closed-loop simulations, showing that the sensor successfully recovers diffraction-limited coronagraph performance over an effective dynamic range of +/-2.5 radians root-mean-square (RMS) wavefront error within 2-10 iterations. We then present the results of initial on-sky testing at the William Herschel Telescope, and demonstrate that the sensor is able to retrieve injected wavefront aberrations to an accuracy of 10nm RMS under realistic seeing conditions. We also find that the cMWS is capable of real-time broadband measurement of atmospheric wavefront variance at a cadence of 50Hz across an uncorrected telescope sub-aperture. When combined with a suitable closed-loop adaptive optics system, the cMWS holds the potential to deliver an improvement in raw contrast of up to two orders of magnitude over the uncorrected QSS floor. Such a sensor would be eminently suitable for the direct imaging and spectroscopy of exoplanets with both existing and future instruments, including EPICS and METIS for the E-ELT.Comment: 14 pages, 12 figures: accepted for publication in Astronomy & Astrophysic

    Use of induced acceleration to quantify the (de)stabilization effect of external and internal forces on postural responses

    Get PDF
    Due to the mechanical coupling between the body segments, it is impossible to see with the naked eye the causes of body movements and understand the interaction between movements of different body parts. The goal of this paper is to investigate the use of induced acceleration analysis to reveal the causes of body movements. We derive the analytical equations to calculate induced accelerations and evaluate its potential to study human postural responses to support-surface translations. We measured the kinematic and kinetic responses of a subject to sudden forward and backward translations of a moving platform. The kinematic and kinetics served as input to the induced acceleration analyses. The induced accelerations showed explicitly that the platform acceleration and deceleration contributed to the destabilization and restabilization of standing balance, respectively. Furthermore, the joint torques, coriolis and centrifugal forces caused by swinging of the arms, contributed positively to stabilization of the center of mass. It is concluded that induced acceleration analyses is a valuable tool in understanding balance responses to different kinds of perturbations and may help to identify the causes of movement in different pathologies

    Perancangan Sistem Angkat Forklift Dengan Kapasitas Angkat 7 Ton

    Full text link
    Forklift is one of the lifting machines that use to lift and move loads which can move loads with a diffirent height without taking a long time than we lift it by people's strength. The Applications of forklift can be seen at sea port area and loading area in industrial. The design of forklift must be applied to find the hydraulic system and the strenght for the forklift so it will definitely lift the cargo which want to be lifted. Design of forklift consists of design hydraulic system and strength for the forklift.. The design of forklift with 7 tons of capacity will be disscused in this thesis

    Social simulation and polycentric policy making: ex ante assessment of administrative reform in the region Rotterdam

    Get PDF
    Administrative reform is often practiced as solution for perceived problems. However, frequently results are disappointing. The authors relate this phenomenon to the multi-centered nature of administrative processes and propose a social simulation method to gain more insight in potential impact of administrative reforms considered by ex ante assessment. Their analysis is supported by a specific example

    Constraining the evolutionary history of Newton's constant with gravitational wave observations

    Full text link
    Space-borne gravitational wave detectors, such as the proposed Laser Interferometer Space Antenna, are expected to observe black hole coalescences to high redshift and with large signal-to-noise ratios, rendering their gravitational waves ideal probes of fundamental physics. The promotion of Newton's constant to a time-function introduces modifications to the binary's binding energy and the gravitational wave luminosity, leading to corrections in the chirping frequency. Such corrections propagate into the response function and, given a gravitational wave observation, they allow for constraints on the first time-derivative of Newton's constant at the time of merger. We find that space-borne detectors could indeed place interesting constraints on this quantity as a function of sky position and redshift, providing a {\emph{constraint map}} over the entire range of redshifts where binary black hole mergers are expected to occur. A LISA observation of an equal-mass inspiral event with total redshifted mass of 10^5 solar masses for three years should be able to measure G˙/G\dot{G}/G at the time of merger to better than 10^(-11)/yr.Comment: 11 pages, 2 figures, replaced with version accepted for publication in Phys. Rev. D

    Karakteristik Bakteri Pereduksi Merkuri (Escherichia Coli) Diisolasi dari Perairan Pantai Teluk Manado

    Get PDF
    In the environment like seawater, mercury can be oxidized by some bacteria, such as Thiobacillus, to produce Hg ions which are soluble in water and toxic to marine organisms, such as bacteria, algae, and so on. On the other hand, the occurrence of Pseudomonas, as E. coli, is believed can reduce the number of Hg ions in the environment. An experiment was conducted to count total coliform and total E. coli, to isolate, to identify E. coli isolated from Manado Bay seawater, and to determine the ability of E. coli isolates to do reduction and or oxidation of mercury ions. Seawater samples were collected from the reclamation area, especially close to Tondano River, Sario River and Bahu River around Manado Bay. As a control, some water samples were taken from Bunaken Island waters at Liang and Muka Kampung area. An amount of 500 ml water samples was taken from the sampling site and placed into container, then brought to the laboratory for further analysis, such as total coliform, total E. coli. In addition, some biochemical tests were also carried out in order to identify the isolate. The results showed that nearly all isolates of E. coli (83.3%) exhibited their ability in mercury ions oxidation, while the isolates that can reduce ion mercury were 13.3% only. The highest Hg-ions reduction was influenced by the characteristic of isolates, and mercury ions oxidation was also dependent upon the strain type
    corecore