8,590 research outputs found
Lorentz-noninvariant neutrino oscillations: model and predictions
We present a three-parameter neutrino-oscillation model for three flavors of
massless neutrinos with Fermi-point splitting and tri-maximal mixing angles.
One of these parameters is the T-violating phase \epsilon, for which the
experimental results from K2K and KamLAND appear to favor a nonzero value. In
this article, we give further model predictions for neutrino oscillations.
Upcoming experiments will be able to test this simple model and the general
idea of Fermi-point splitting. Possible implications for proposed experiments
and neutrino factories are also discussed.Comment: 22 pages, v5: final version to appear in IJMP
The activity of supported vanadium oxide catalysts for the selective reduction of NO with ammonia
The activities of monolayer V2O5 catalysts for the selective reduction of NO with NH3 are compared with those of commercial available catalysts containing V and/or W. From steady state and pulse experiments it can be concluded that the reduction of surface sites proceeds either by NH3 + NO or by NH3 alone. The reoxidation of the reduced sites occurs by gaseous oxygen or NO. The experimental reaction stoichiometry can be explained in terms of suitable combinations of these four reactions
Evolution of Binary Black Hole Spacetimes
We describe early success in the evolution of binary black hole spacetimes
with a numerical code based on a generalization of harmonic coordinates.
Indications are that with sufficient resolution this scheme is capable of
evolving binary systems for enough time to extract information about the orbit,
merger and gravitational waves emitted during the event. As an example we show
results from the evolution of a binary composed of two equal mass, non-spinning
black holes, through a single plunge-orbit, merger and ring down. The resultant
black hole is estimated to be a Kerr black hole with angular momentum parameter
a~0.70. At present, lack of resolution far from the binary prevents an accurate
estimate of the energy emitted, though a rough calculation suggests on the
order of 5% of the initial rest mass of the system is radiated as gravitational
waves during the final orbit and ringdown.Comment: 4 pages, 3 figure
The coronagraphic Modal Wavefront Sensor: a hybrid focal-plane sensor for the high-contrast imaging of circumstellar environments
The raw coronagraphic performance of current high-contrast imaging
instruments is limited by the presence of a quasi-static speckle (QSS)
background, resulting from instrumental non-common path errors (NCPEs). Rapid
development of efficient speckle subtraction techniques in data reduction has
enabled final contrasts of up to 10-6 to be obtained, however it remains
preferable to eliminate the underlying NCPEs at the source. In this work we
introduce the coronagraphic Modal Wavefront Sensor (cMWS), a new wavefront
sensor suitable for real-time NCPE correction. This pupil-plane optic combines
the apodizing phase plate coronagraph with a holographic modal wavefront
sensor, to provide simultaneous coronagraphic imaging and focal-plane wavefront
sensing using the science point spread function. We first characterise the
baseline performance of the cMWS via idealised closed-loop simulations, showing
that the sensor successfully recovers diffraction-limited coronagraph
performance over an effective dynamic range of +/-2.5 radians root-mean-square
(RMS) wavefront error within 2-10 iterations. We then present the results of
initial on-sky testing at the William Herschel Telescope, and demonstrate that
the sensor is able to retrieve injected wavefront aberrations to an accuracy of
10nm RMS under realistic seeing conditions. We also find that the cMWS is
capable of real-time broadband measurement of atmospheric wavefront variance at
a cadence of 50Hz across an uncorrected telescope sub-aperture. When combined
with a suitable closed-loop adaptive optics system, the cMWS holds the
potential to deliver an improvement in raw contrast of up to two orders of
magnitude over the uncorrected QSS floor. Such a sensor would be eminently
suitable for the direct imaging and spectroscopy of exoplanets with both
existing and future instruments, including EPICS and METIS for the E-ELT.Comment: 14 pages, 12 figures: accepted for publication in Astronomy &
Astrophysic
Learning innovation and proximity. An empirical exploration of patterns of learning: a case study
Use of induced acceleration to quantify the (de)stabilization effect of external and internal forces on postural responses
Due to the mechanical coupling between the body segments, it is impossible to see with the naked eye the causes of body movements and understand the interaction between movements of different body parts. The goal of this paper is to investigate the use of induced acceleration analysis to reveal the causes of body movements. We derive the analytical equations to calculate induced accelerations and evaluate its potential to study human postural responses to support-surface translations. We measured the kinematic and kinetic responses of a subject to sudden forward and backward translations of a moving platform. The kinematic and kinetics served as input to the induced acceleration analyses. The induced accelerations showed explicitly that the platform acceleration and deceleration contributed to the destabilization and restabilization of standing balance, respectively. Furthermore, the joint torques, coriolis and centrifugal forces caused by swinging of the arms, contributed positively to stabilization of the center of mass. It is concluded that induced acceleration analyses is a valuable tool in understanding balance responses to different kinds of perturbations and may help to identify the causes of movement in different pathologies
Perancangan Sistem Angkat Forklift Dengan Kapasitas Angkat 7 Ton
Forklift is one of the lifting machines that use to lift and move loads which can move loads with a diffirent height without taking a long time than we lift it by people's strength. The Applications of forklift can be seen at sea port area and loading area in industrial. The design of forklift must be applied to find the hydraulic system and the strenght for the forklift so it will definitely lift the cargo which want to be lifted. Design of forklift consists of design hydraulic system and strength for the forklift.. The design of forklift with 7 tons of capacity will be disscused in this thesis
Social simulation and polycentric policy making: ex ante assessment of administrative reform in the region Rotterdam
Administrative reform is often practiced as solution for perceived
problems. However, frequently results are disappointing. The authors
relate this phenomenon to the multi-centered nature of administrative
processes and propose a social simulation method to gain more insight in
potential impact of administrative reforms considered by ex ante
assessment. Their analysis is supported by a specific example
Constraining the evolutionary history of Newton's constant with gravitational wave observations
Space-borne gravitational wave detectors, such as the proposed Laser
Interferometer Space Antenna, are expected to observe black hole coalescences
to high redshift and with large signal-to-noise ratios, rendering their
gravitational waves ideal probes of fundamental physics. The promotion of
Newton's constant to a time-function introduces modifications to the binary's
binding energy and the gravitational wave luminosity, leading to corrections in
the chirping frequency. Such corrections propagate into the response function
and, given a gravitational wave observation, they allow for constraints on the
first time-derivative of Newton's constant at the time of merger. We find that
space-borne detectors could indeed place interesting constraints on this
quantity as a function of sky position and redshift, providing a
{\emph{constraint map}} over the entire range of redshifts where binary black
hole mergers are expected to occur. A LISA observation of an equal-mass
inspiral event with total redshifted mass of 10^5 solar masses for three years
should be able to measure at the time of merger to better than
10^(-11)/yr.Comment: 11 pages, 2 figures, replaced with version accepted for publication
in Phys. Rev. D
Karakteristik Bakteri Pereduksi Merkuri (Escherichia Coli) Diisolasi dari Perairan Pantai Teluk Manado
In the environment like seawater, mercury can be oxidized by some bacteria, such as Thiobacillus, to produce Hg ions which are soluble in water and toxic to marine organisms, such as bacteria, algae, and so on. On the other hand, the occurrence of Pseudomonas, as E. coli, is believed can reduce the number of Hg ions in the environment. An experiment was conducted to count total coliform and total E. coli, to isolate, to identify E. coli isolated from Manado Bay seawater, and to determine the ability of E. coli isolates to do reduction and or oxidation of mercury ions. Seawater samples were collected from the reclamation area, especially close to Tondano River, Sario River and Bahu River around Manado Bay. As a control, some water samples were taken from Bunaken Island waters at Liang and Muka Kampung area. An amount of 500 ml water samples was taken from the sampling site and placed into container, then brought to the laboratory for further analysis, such as total coliform, total E. coli. In addition, some biochemical tests were also carried out in order to identify the isolate. The results showed that nearly all isolates of E. coli (83.3%) exhibited their ability in mercury ions oxidation, while the isolates that can reduce ion mercury were 13.3% only. The highest Hg-ions reduction was influenced by the characteristic of isolates, and mercury ions oxidation was also dependent upon the strain type
- …
