1,404 research outputs found

    On the stability of hole crystals in layered cuprates

    Full text link
    Recent STM measurements have revealed the existence of periodic charge modulations at the surface of certain cuprate superconductors. Here we show that the observed patterns are compatible with the formation of a three-dimensional crystal of doped holes, with space correlations extending between different Cu-O layers. This puts severe constraints on the dynamical stability of the crystallised hole structure, resulting in a close relationship between the periodicity of the electronic modulation and the interlayer distance.Comment: completed reference list, fig. 3 corrected; accepted for publication in Eur. Phys. J. B, Rapid Note

    Signatures of polaronic charge ordering in optical and dc conductivity using dynamical mean field theory

    Full text link
    We apply dynamical mean field theory to study a prototypical model that describes charge ordering in the presence of both electron-lattice interactions and intersite electrostatic repulsion between electrons. We calculate the optical and d.c. conductivity, and derive approximate formulas valid in the limiting electron-lattice coupling regimes. In the weak coupling regime, we recover the usual behavior of charge density waves, characterized by a transfer of spectral weight due to the opening of a gap in the excitation spectrum. In the opposite limit of very strong electron-lattice coupling, instead, the charge ordering transition is signaled by a global enhancement of the optical absorption, with no appreciable spectral weight transfer. Such behavior is related to the progressive suppression of thermally activated charge defects taking place below the critical temperature. At intermediate values of the coupling within the polaronic regime, a complex behavior is obtained where both mechanisms of transfer and enhancement of spectral weight coexist.Comment: 1 figure added, illustrating the optical sum rul

    On the Choice of Tool Material in Friction Stir Welding of Titanium Alloys

    Get PDF
    Friction Stir Welding (FSW) is a solid state welding process patented in 1991 by TWI; initially adopted to weld aluminum alloys, is now being successfully used also for magnesium alloys, copper and steels. The wide diffusion the process is having is due to the possibility to weld both materials traditionally considered difficult to be welded or "unweldable" by traditional fusion welding processes due to peculiar thermal and chemical material properties, and complex geometries as sandwich structures and straightening panels. Recently, research is focusing on titanium alloys thanks to the high interest that such materials are getting from the industry due to the extremely high strength-weight ratio together with good corrosion resistance properties. At the moment, the main limit to the industrial applicability of FSW to titanium alloys is the tool life, as ultra wear and deformation resistant materials must be used. In this paper a, experimental study of the tool life in FSW of titanium alloys sheets at the varying of the main process parameters is performed. Numerical simulation provided important information for the fixture design and analysis of results. Tungsten and Rhenium alloy W25Re tools are found to be the most reliable among the ones considered

    Bose-Fermi mixtures in the molecular limit

    Full text link
    We consider a Bose-Fermi mixture in the molecular limit of the attractive interaction between fermions and bosons. For a boson density smaller or equal to the fermion density, we show analytically how a T-matrix approach for the constituent bosons and fermions recovers the expected physical limit of a Fermi-Fermi mixture of molecules and atoms. In this limit, we derive simple expressions for the self-energies, the momentum distribution function, and the chemical potentials. By extending these equations to a trapped system, we determine how to tailor the experimental parameters of a Bose-Fermi mixture in order to enhance the 'indirect Pauli exclusion effect' on the boson momentum distribution function. For the homogeneous system, we present finally a Diffusion Monte Carlo simulation which confirms the occurrence of such a peculiar effect.Comment: 13 pages, 7 figures; final versio

    A model for liquid-striped liquid phase separation in liquids of anisotropic polarons

    Full text link
    The phase separation between a striped polaron liquid at the particular density and a high density polaron liquid is described by a modified Van der Waals scheme. The striped polaron liquid represents the pseudo gap matter or Wigner-like polaron phase at 1/8 doping in cuprate superconductors. The model includes the tendency of pseudo- Jahn-Teller polarons to form anisotropic directional bonds at a preferential volume with the formation of different liquid phases. The model gives the coexistence of a first low density polaron striped liquid and a second high density liquid that appears in cuprate superconductors for doping larger than 1/8. We discuss how the strength of anisotropic bonds controls the variation the phase separation scenarios for complex systems in the presence of a quantum critical point where the phase separation vanishes.Comment: 10 pages, 3 figure

    2D-3D registration of CT vertebra volume to fluoroscopy projection: A calibration model assessment (doi:10.1155/2010/806094)

    Get PDF
    This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume) and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1?mm for displacements parallel to the fluoroscopic plane, and of order of 10?mm for the orthogonal displacement.<br/

    Polaronic features in the optical properties of the Holstein-t-J model

    Full text link
    We derive the exact solution for the optical conductivity σ(ω)\sigma(\omega) of one hole in the Holstein-t-J model in the framework of dynamical mean-field theory (DMFT). We investigate the magnetic and phonon features associated with polaron formation as a function of the exchange coupling JJ, of the electron-phonon interaction λ\lambda and of the temperature. Our solution directly relates the features of the optical conductivity to the excitations in the single-particle spectral function, revealing two distinct mechanisms of closing and filling of the optical pseudogap that take place upon varying the microscopic parameters. We show that the optical absorption at the polaron crossover is characterized by a coexistence of a magnon peak at low frequency and a broad polaronic band at higher frequency. An analytical expression for σ(ω)\sigma(\omega) valid in the polaronic regime is presented.Comment: improved version, as submitted to Phys. Rev.

    Quantum Monte Carlo Study of a Resonant Bose-Fermi Mixture

    Get PDF
    We study a resonant Bose-Fermi mixture at zero temperature by using the fixed-node diffusion Monte Carlo method. We explore the system from weak to strong boson-fermion interaction, for different concentrations of the bosons relative to the fermion component. We focus on the case where the boson density nBn_B is smaller than the fermion density nFn_F, for which a first-order quantum phase transition is found from a state with condensed bosons immersed in a Fermi sea, to a Fermi-Fermi mixture of composite fermions and unpaired fermions. We obtain the equation of state and the phase diagram, and we find that the region of phase separation shrinks to zero for vanishing nBn_B.Comment: 5 pages, 3 figures, published versio

    On the interface polaron formation in organic field-effect transistors

    Full text link
    A model describing the low density carrier state in an organic single crystal FET with high-κ\kappa gate dielectrics is studied. The interplay between charge carrier coupling with inter-molecular vibrations in the bulk of the organic material and the long-range interaction induced at the interface with a polar dielectric is investigated. This interplay is responsible for the stabilization of a polaronic state with an internal structure extending on few lattice sites, at much lower coupling strengths than expected from the polar interaction alone. This effect could give rise to polaron self-trapping in high-κ\kappa organic FET's without invoking unphysically large values of the carrier interface interaction.Comment: 9 pages, 9 figure
    corecore