967 research outputs found

    Undoing measurement-induced dephasing in circuit QED

    Get PDF
    We analyze the backaction of homodyne detection and photodetection on superconducting qubits in circuit quantum electrodynamics. Although both measurement schemes give rise to backaction in the form of stochastic phase rotations, which leads to dephasing, we show that this can be perfectly undone provided that the measurement signal is fully accounted for. This result improves upon that of Phys. Rev. A, 82, 012329 (2010), showing that the method suggested can be made to realize a perfect two-qubit parity measurement. We propose a benchmarking experiment on a single qubit to demonstrate the method using homodyne detection. By analyzing the limited measurement efficiency of the detector and bandwidth of the amplifier, we show that the parameter values necessary to see the effect are within the limits of existing technology

    Odin observations of ammonia in the Sgr A +50 km/s Cloud and Circumnuclear Disk

    Get PDF
    Context. The Odin satellite is now into its sixteenth year of operation, much surpassing its design life of two years. One of the sources which Odin has observed in great detail is the Sgr A Complex in the centre of the Milky Way. Aims. To study the presence of NH3 in the Galactic Centre and spiral arms. Methods. Recently, Odin has made complementary observations of the 572 GHz NH3 line towards the Sgr A +50 km/s Cloud and Circumnuclear Disk (CND). Results. Significant NH3 emission has been observed in both the +50 km/s Cloud and the CND. Clear NH3 absorption has also been detected in many of the spiral arm features along the line of sight from the Sun to the core of our Galaxy. Conclusions. The very large velocity width (80 km/s) of the NH3 emission associated with the shock region in the southwestern part of the CND may suggest a formation/desorption scenario similar to that of gas-phase H2O in shocks/outflows.Comment: 5 pages, 3 figures, 3 table

    Oscillating bound states for a giant atom

    Get PDF
    We investigate the relaxation dynamics of a single artificial atom interacting, via multiple coupling points, with a continuum of bosonic modes (photons or phonons) in a one-dimensional waveguide. In the non-Markovian regime, where the traveling time of a photon or phonon between the coupling points is sufficiently large compared to the inverse of the bare relaxation rate of the atom, we find that a boson can be trapped and form a stable bound state. As a key discovery, we further find that a persistently oscillating bound state can appear inside the continuous spectrum of the waveguide if the number of coupling points is more than two since such a setup enables multiple bound modes to coexist. This opens up prospects for storing and manipulating quantum information in larger Hilbert spaces than available in previously known bound states

    Riemann's theorem for quantum tilted rotors

    Full text link
    The angular momentum, angular velocity, Kelvin circulation, and vortex velocity vectors of a quantum Riemann rotor are proven to be either (1) aligned with a principal axis or (2) lie in a principal plane of the inertia ellipsoid. In the second case, the ratios of the components of the Kelvin circulation to the corresponding components of the angular momentum, and the ratios of the components of the angular velocity to those of the vortex velocity are analytic functions of the axes lengths.Comment: 8 pages, Phys. Rev.

    Submillimeter Emission from Water in the W3 Region

    Full text link
    We have mapped the submillimeter emission from the 1(10)-1(01) transition of ortho-water in the W3 star-forming region. A 5'x5' map of the W3 IRS4 and W3 IRS5 region reveals strong water lines at half the positions in the map. The relative strength of the Odin lines compared to previous observations by SWAS suggests that we are seeing water emission from an extended region. Across much of the map the lines are double-peaked, with an absorption feature at -39 km/s; however, some positions in the map show a single strong line at -43 km/s. We interpret the double-peaked lines as arising from optically thick, self-absorbed water emission near the W3 IRS5, while the narrower blue-shifted lines originate in emission near W3 IRS4. In this model, the unusual appearance of the spectral lines across the map results from a coincidental agreement in velocity between the emission near W3 IRS4 and the blue peak of the more complex lines near W3 IRS5. The strength of the water lines near W3 IRS4 suggests we may be seeing water emission enhanced in a photon-dominated region.Comment: Accepted to A&A Letters as part of the special Odin issue; 4 page

    Neutron-proton interaction in rare-earth nuclei: Role of tensor force

    Get PDF
    We investigate the role of the tensor force in the description of doubly odd deformed nuclei within the framework of the particle-rotor model. We study the rare-earth nuclei 174Lu, 180Ta, 182Ta, and 188Re using a finite-range interaction, with and without tensor terms. Attention is focused on the lowest K=0 and K=1 bands, where the effects of the residual neutron-proton interaction are particularly evident. Comparison of the calculated results with experimental data evidences the importance of the tensor-force effects.Comment: 8 pages, 5 figures, to be published on Physical Review

    Semiclassical Time Evolution and Trace Formula for Relativistic Spin-1/2 Particles

    Full text link
    We investigate the Dirac equation in the semiclassical limit \hbar --> 0. A semiclassical propagator and a trace formula are derived and are shown to be determined by the classical orbits of a relativistic point particle. In addition, two phase factors enter, one of which can be calculated from the Thomas precession of a classical spin transported along the particle orbits. For the second factor we provide an interpretation in terms of dynamical and geometric phases.Comment: 8 pages, no figure
    corecore