1,287 research outputs found
Experimental Study of Heat Convection From Stationary and Oscillating Circular Cylinder in Cross Flow
An experimental study is made on the processes of heat transfer from the surface of a
forced oscillating cylinder in a crossflow. A range of oscillation amplitude (A/D
=0.1,0.2), forced oscillation frequency (0<St_c<1), and Reynolds number (Re=550,
1100, 3500) is covered in water (Pr=6). Besides the increase at the natural vortex
shedding frequency, large increases in the heat transfer are found at certain superharmonics.
By using Digital Particle Image Velocimetry/Thermometry (DPIV/T), the increase
in the heat transfer rate is found to correlate inversely with the distance at which
vortices roll-up behind the cylinder, i.e., the distance decreases when the heat transfer
increases. The cause of the increase is found to be the removal of the stagnant and low
heat convecting fluid at the base of the cylinder during the roll-up of the vortices
Inherent-opening-controlled pattern formation in carbon nanotube arrays
We have introduced inherent openings into densely packed carbon nanotube arrays to study self-organized pattern formation when the arrays undergo a wetting–dewetting treatment from nanotube tips. These inherent openings, made of circular or elongated hollows in nanotube mats, serve as dewetting centres, from where liquid recedes from. As the dewetting centres initiate dry zones and the dry zones expand, surrounding nanotubes are pulled away from the dewetting centres by liquid surface tension. Among short nanotubes, the self-organized patterns are consistent with the shape of the inherent openings, i.e. slender openings lead to elongated trench-like structures, and circular holes result in relatively round nest-like arrangements. Nanotubes in a relatively high mat are more connected, like in an elastic body, than those in a short mat. Small cracks often initialize themselves in a relatively high mat, along two or more adjacent round openings; each of the cracks evolves into a trench as liquid dries up. Self-organized pattern control with inherent openings needs to initiate the dewetting process above the nanotube tips. If there is no liquid on top, inherent openings barely enlarge themselves after the wetting–dewetting treatment
A dynamical model of oncotripsy by mechanical cell fatigue: selective cancer cell ablation by low-intensity pulsed ultrasound
The method of oncotripsy, first proposed in Heyden & Ortiz (Heyden & Ortiz 2016 J. Mech. Phys. Solids 92, 164–175 (doi:10.1016/j.jmps.2016.04.016)), exploits aberrations in the material properties and morphology of cancerous cells in order to ablate them selectively by means of tuned low-intensity pulsed ultrasound. We propose the dynamical model of oncotripsy that follows as an application of cell dynamics, statistical mechanical theory of network elasticity and ‘birth–death’ kinetics to describe the processes of damage and repair of the cytoskeleton. We also develop a reduced dynamical model that approximates the three-dimensional dynamics of the cell and facilitates parametric studies, including sensitivity analysis and process optimization. We show that the dynamical model predicts—and provides a conceptual basis for understanding—the oncotripsy effect and other trends in the data of Mittelstein et al. (Mittelstein et al. 2019 Appl. Phys. Lett. 116, 013701 (doi:10.1063/1.5128627)), for cells in suspension, including the dependence of cell-death curves on cell and process parameters
Vorticity statistics in the two-dimensional enstrophy cascade
We report the first extensive experimental observation of the two-dimensional
enstrophy cascade, along with the determination of the high order vorticity
statistics. The energy spectra we obtain are remarkably close to the Kraichnan
Batchelor expectation. The distributions of the vorticity increments, in the
inertial range, deviate only little from gaussianity and the corresponding
structure functions exponents are indistinguishable from zero. It is thus shown
that there is no sizeable small scale intermittency in the enstrophy cascade,
in agreement with recent theoretical analyses.Comment: 5 pages, 7 Figure
Long-term dry immersion: review and prospects
Dry immersion, which is a ground-based model of prolonged conditions of microgravity, is widely used in Russia but is less well known elsewhere. Dry immersion involves immersing the subject in thermoneutral water covered with an elastic waterproof fabric. As a result, the immersed subject, who is freely suspended in the water mass, remains dry. For a relatively short duration, the model can faithfully reproduce most physiological effects of actual microgravity, including centralization of body fluids, support unloading, and hypokinesia. Unlike bed rest, dry immersion provides a unique opportunity to study the physiological effects of the lack of a supporting structure for the body (a phenomenon we call \u27supportlessness\u27). In this review, we attempt to provide a detailed description of dry immersion. The main sections of the paper discuss the changes induced by long-term dry immersion in the neuromuscular and sensorimotor systems, fluid-electrolyte regulation, the cardiovascular system, metabolism, blood and immunity, respiration, and thermoregulation. The long-term effects of dry immersion are compared with those of bed rest and actual space flight. The actual and potential uses of dry immersion are discussed in the context of fundamental studies and applications for medical support during space flight and terrestrial health care
Malignancy risk analysis in patients with inadequate fine needle aspiration cytology (FNAC) of the thyroid
Background
Thyroid fine needle aspiration cytology (FNAC) is the standard diagnostic modality for thyroid nodules. However, it has limitations among which is the incidence of non-diagnostic results (Thy1). Management of cases with repeatedly non-diagnostic FNAC ranges from simple observation to surgical intervention. We aim to evaluate the incidence of malignancy in non-diagnostic FNAC, and the success rate of repeated FNAC. We also aim to evaluate risk factors for malignancy in patients with non-diagnostic FNAC.
Materials and Methods
Retrospective analyses of consecutive cases with thyroid non diagnostic FNAC results were included.
Results
Out of total 1657 thyroid FNAC done during the study period, there were 264 (15.9%) non-diagnostic FNAC on the first attempt. On repeating those, the rate of a non-diagnostic result on second FNAC was 61.8% and on third FNAC was 47.2%. The overall malignancy rate in Thy1 FNAC was 4.5% (42% papillary, 42% follicular and 8% anaplastic), and the yield of malignancy decreased considerably with successive non-diagnostic FNAC. Ultrasound guidance by an experienced head neck radiologist produced the lowest non-diagnostic rate (38%) on repetition compared to US guidance by a generalist radiologist (65%) and by non US guidance (90%).
Conclusions
There is a low risk of malignancy in patients with a non-diagnostic FNAC result, commensurate to the risk of any nodule. The yield of malignancy decreased considerably with successive non-diagnostic FNAC
A decrease of calcitonin serum concentrations less than 50 percent 30 minutes after thyroid surgery suggests incomplete C-cell tumor tissue removal
The prognosis of medullary thyroid carcinoma (MTC) depends on the completeness of the first surgical treatment. To date, it is not possible to predict whether the tumor has been completely removed after surgery. The aim of this study was to evaluate the reliability of an intraoperative calcitonin monitoring as a predictor of the final outcome after surgery in patients with MTC
Phase Transitions in a Two-Component Site-Bond Percolation Model
A method to treat a N-component percolation model as effective one component
model is presented by introducing a scaled control variable . In Monte
Carlo simulations on , , and simple cubic
lattices the percolation threshold in terms of is determined for N=2.
Phase transitions are reported in two limits for the bond existence
probabilities and . In the same limits, empirical formulas
for the percolation threshold as function of one
component-concentration, , are proposed. In the limit a new
site percolation threshold, , is reported.Comment: RevTeX, 5 pages, 5 eps-figure
Selective Ablation of Cancer Cells with Low Intensity Pulsed Ultrasound
Ultrasound can be focused into deep tissues with millimeter precision to perform noninvasive ablative therapy for diseases such as cancer. In most cases, this ablation uses high intensity ultrasound to deposit nonselective thermal or mechanical energy at the ultrasound focus, damaging both healthy bystander tissue and cancer cells. Here, we describe an alternative low intensity (I_(SPTA) 20 ms causes selective disruption of a panel of breast, colon, and leukemia cancer cell models in suspension without significantly damaging healthy immune or red blood cells. Mechanistic experiments reveal that the formation of acoustic standing waves and the emergence of cell-seeded cavitation lead to cytoskeletal disruption, expression of apoptotic markers, and cell death. The inherent selectivity of this low intensity pulsed ultrasound approach offers a potentially safer and thus more broadly applicable alternative to nonselective high intensity ultrasound ablation
- …
