21 research outputs found
Do trabalho de campo ao arquivo digital: performance, interação e Terra de Arnhem, Austrália
Misregulation of Scm3p/HJURP Causes Chromosome Instability in Saccharomyces cerevisiae and Human Cells
The kinetochore (centromeric DNA and associated proteins) is a key determinant for high fidelity chromosome transmission. Evolutionarily conserved Scm3p is an essential component of centromeric chromatin and is required for assembly and function of kinetochores in humans, fission yeast, and budding yeast. Overexpression of HJURP, the mammalian homolog of budding yeast Scm3p, has been observed in lung and breast cancers and is associated with poor prognosis; however, the physiological relevance of these observations is not well understood. We overexpressed SCM3 and HJURP in Saccharomyces cerevisiae and HJURP in human cells and defined domains within Scm3p that mediate its chromosome loss phenotype. Our results showed that the overexpression of SCM3 (GALSCM3) or HJURP (GALHJURP) caused chromosome loss in a wild-type yeast strain, and overexpression of HJURP led to mitotic defects in human cells. GALSCM3 resulted in reduced viability in kinetochore mutants, premature separation of sister chromatids, and reduction in Cse4p and histone H4 at centromeres. Overexpression of CSE4 or histone H4 suppressed chromosome loss and restored levels of Cse4p at centromeres in GALSCM3 strains. Using mutant alleles of scm3, we identified a domain in the N-terminus of Scm3p that mediates its interaction with CEN DNA and determined that the chromosome loss phenotype of GALSCM3 is due to centromeric association of Scm3p devoid of Cse4p/H4. Furthermore, we determined that similar to other systems the centromeric association of Scm3p is cell cycle regulated. Our results show that altered stoichiometry of Scm3p/HJURP, Cse4p, and histone H4 lead to defects in chromosome segregation. We conclude that stringent regulation of HJURP and SCM3 expression are critical for genome stability
A Barcode Screen for Epigenetic Regulators Reveals a Role for the NuB4/HAT-B Histone Acetyltransferase Complex in Histone Turnover
Dynamic modification of histone proteins plays a key role in regulating gene expression. However, histones themselves can also be dynamic, which potentially affects the stability of histone modifications. To determine the molecular mechanisms of histone turnover, we developed a parallel screening method for epigenetic regulators by analyzing chromatin states on DNA barcodes. Histone turnover was quantified by employing a genetic pulse-chase technique called RITE, which was combined with chromatin immunoprecipitation and high-throughput sequencing. In this screen, the NuB4/HAT-B complex, containing the conserved type B histone acetyltransferase Hat1, was found to promote histone turnover. Unexpectedly, the three members of this complex could be functionally separated from each other as well as from the known interacting factor and histone chaperone Asf1. Thus, systematic and direct interrogation of chromatin structure on DNA barcodes can lead to the discovery of genes and pathways involved in chromatin modification and dynamics
Telomere Cap Components Influence the Rate of Senescence in Telomerase-Deficient Yeast Cells
Cells lacking telomerase undergo senescence, a progressive reduction in cell division that involves a cell cycle delay and culminates in “crisis,” a period when most cells become inviable. In telomerase-deficient Saccharomyces cerevisiae cells lacking components of the nonsense-mediated mRNA decay (NMD) pathway (Upf1,Upf2, or Upf3 proteins), senescence is delayed, with crisis occurring ∼10 to 25 population doublings later than in Upf(+) cells. Delayed senescence is seen in upfΔ cells lacking the telomerase holoenzyme components Est2p and TLC1 RNA, as well as in cells lacking the telomerase regulators Est1p and Est3p. The delay of senescence in upfΔ cells is not due to an increased rate of survivor formation. Rather, it is caused by alterations in the telomere cap, composed of Cdc13p, Stn1p, and Ten1p. In upfΔ mutants, STN1 and TEN1 levels are increased. Increasing the levels of Stn1p and Ten1p in Upf(+) cells is sufficient to delay senescence. In addition, cdc13-2 mutants exhibit delayed senescence rates similar to those of upfΔ cells. Thus, changes in the telomere cap structure are sufficient to affect the rate of senescence in the absence of telomerase. Furthermore, the NMD pathway affects the rate of senescence in telomerase-deficient cells by altering the stoichiometry of telomere cap components
Question de parenté
Les études sur la parenté et le mariage ont accompli d’immenses progrès. Après tant de travaux parus depuis cinquante ans, ce numéro de L’Homme en apporte une preuve supplémentaire et qui fera date. De vieux dossiers sont rouverts, explorés et réinterprétés en profondeur, ainsi le système dravidien. Le traitement algébrique des systèmes de parenté a pris en Hollande un nouvel essor. Des matériaux généalogiques d’une richesse que n’aurait pu soupçonner William H. R. Rivers, recueillis dans diverses régions du monde, peuvent être exploités au moyen de l’informatique. L’originalité des vues théoriques, les rapprochements entre des domaines très divers renouvellent les problèmes discutés dans ce numéro, et leur portée s’étend bien au-delà
