2,243 research outputs found
Myomectomy as a pregnancy-preserving option in the carefully selected patient
Objectives: To present the indications for myomectomy during pregnancy and to discuss complications possibly related and unrelated to the procedure. Method and Results: A 33-year-old patient at 18 weeks of gestation underwent removal of a 1,570-gram symptomatic fundic myoma. Histologically the patient had a leiomyomatous neoplasm of uncertain malignant potential. The pregnancy was continued under sequential observation with magnetic resonance imaging and ultrasound. At 36 weeks of gestation a healthy girl with an upper extremity limb defect was born via cesarean section. Follow-up of the mother and the child was uneventful. Conclusions: Certain known risk factors in pregnant women with myomas can predispose to complications during pregnancy. Women with such risk factors or women who have failed medical therapy should be offered the option of undergoing myomectomy as a pregnancy-preserving procedure. Copyright (C) 2002 S. Karger AG, Basel
Geometric phases and quantum phase transitions
Quantum phase transition is one of the main interests in the field of
condensed matter physics, while geometric phase is a fundamental concept and
has attracted considerable interest in the field of quantum mechanics. However,
no relevant relation was recognized before recent work. In this paper, we
present a review of the connection recently established between these two
interesting fields: investigations in the geometric phase of the many-body
systems have revealed so-called "criticality of geometric phase", in which
geometric phase associated with the many-body ground state exhibits
universality, or scaling behavior in the vicinity of the critical point. In
addition, we address the recent advances on the connection of some other
geometric quantities and quantum phase transitions. The closed relation
recently recognized between quantum phase transitions and some of geometric
quantities may open attractive avenues and fruitful dialog between different
scientific communities.Comment: Invited review article for IJMPB; material covered till June 2007; 10
page
Non Local Theories: New Rules for Old Diagrams
We show that a general variant of the Wick theorems can be used to reduce the
time ordered products in the Gell-Mann & Low formula for a certain class on non
local quantum field theories, including the case where the interaction
Lagrangian is defined in terms of twisted products.
The only necessary modification is the replacement of the
Stueckelberg-Feynman propagator by the general propagator (the ``contractor''
of Denk and Schweda)
D(y-y';tau-tau')= - i
(Delta_+(y-y')theta(tau-tau')+Delta_+(y'-y)theta(tau'-tau)), where the
violations of locality and causality are represented by the dependence of
tau,tau' on other points, besides those involved in the contraction. This leads
naturally to a diagrammatic expansion of the Gell-Mann & Low formula, in terms
of the same diagrams as in the local case, the only necessary modification
concerning the Feynman rules. The ordinary local theory is easily recovered as
a special case, and there is a one-to-one correspondence between the local and
non local contributions corresponding to the same diagrams, which is preserved
while performing the large scale limit of the theory.Comment: LaTeX, 14 pages, 1 figure. Uses hyperref. Symmetry factors added;
minor changes in the expositio
The role of infrared divergence for decoherence
Continuous and discrete superselection rules induced by the interaction with
the environment are investigated for a class of exactly soluble Hamiltonian
models. The environment is given by a Boson field. Stable superselection
sectors emerge if and only if the low frequences dominate and the ground state
of the Boson field disappears due to infrared divergence. The models allow
uniform estimates of all transition matrix elements between different
superselection sectors.Comment: 11 pages, extended and simplified proo
Continuity of the four-point function of massive -theory above threshold
In this paper we prove that the four-point function of massive
\vp_4^4-theory is continuous as a function of its independent external
momenta when posing the renormalization condition for the (physical) mass
on-shell. The proof is based on integral representations derived inductively
from the perturbative flow equations of the renormalization group. It closes a
longstanding loophole in rigorous renormalization theory in so far as it shows
the feasibility of a physical definition of the renormalized coupling.Comment: 23 pages; to appear in Rev. Math. Physics few corrections, two
explanatory paragraphs adde
An analyst's take on the BPHZ theorem
We provide a self-contained formulation of the BPHZ theorem in the Euclidean
context, which yields a systematic procedure to "renormalise" otherwise
divergent integrals appearing in generalised convolutions of functions with a
singularity of prescribed order at their origin. We hope that the formulation
given in this article will appeal to an analytically minded audience and that
it will help to clarify to what extent such renormalisations are arbitrary (or
not). In particular, we do not assume any background whatsoever in quantum
field theory and we stay away from any discussion of the physical context in
which such problems typically arise.Comment: Accepted versio
A model of quantum reduction with decoherence
The problem of reduction (wave packet reduction) is reexamined under two
simple conditions: Reduction is a last step completing decoherence. It acts in
commonplace circumstances and should be therefore compatible with the
mathematical frame of quantum field theory and the standard model.
These conditions lead to an essentially unique model for reduction.
Consistency with renormalization and time-reversal violation suggest however a
primary action in the vicinity of Planck's length. The inclusion of quantum
gravity and the uniqueness of space-time point moreover to generalized quantum
theory, first proposed by Gell-Mann and Hartle, as a convenient framework for
developing this model into a more complete theory.Comment: 20 pages. To be published in Physical Review
A Dicke Type Model for Equilibrium BEC Superradiance
We study the effect of electromagnetic radiation on the condensate of a Bose
gas. In an earlier paper we considered the problem for two simple models
showing the cooperative effect between Bose-Einstein condensation and
superradiance. In this paper we formalise the model suggested by Ketterle et al
in which the Bose condensate particles have a two level structure. We present a
soluble microscopic Dicke type model describing a thermodynamically stable
system. We find the equilibrium states of the system and compute the
thermodynamic functions giving explicit formulae expressing the cooperative
effect between Bose-Einstein condensation and superradiance
Thermodynamic Limit and Decoherence: Rigorous Results
Time evolution operator in quantum mechanics can be changed into a
statistical operator by a Wick rotation. This strict relation between
statistical mechanics and quantum evolution can reveal deep results when the
thermodynamic limit is considered. These results translate in a set of theorems
proving that these effects can be effectively at work producing an emerging
classical world without recurring to any external entity that in some cases
cannot be properly defined. In a many-body system has been recently shown that
Gaussian decay of the coherence is the rule with a duration of recurrence more
and more small as the number of particles increases. This effect has been
observed experimentally. More generally, a theorem about coherence of bulk
matter can be proved. All this takes us to the conclusion that a well definite
boundary for the quantum to classical world does exist and that can be drawn by
the thermodynamic limit, extending in this way the deep link between
statistical mechanics and quantum evolution to a high degree.Comment: 5 pages, no figures. Contribution to proceedings of DICE 2006
(Piombino, Italy, September 11-15, 2006
Subtraction at NNLO
We propose a framework for the implementation of a subtraction formalism at
NNLO in QCD, based on an observable- and process-independent cancellation of
infrared singularities. As a first simple application, we present the
calculation of the contribution to the e+e- dijet cross section proportional to
C_F T_RComment: 42 pages Latex; 7 figures included. Modifications to the text, and
references added; the results are unchange
- …
