349 research outputs found
Quantum Optical Systems for the Implementation of Quantum Information Processing
We review the field of Quantum Optical Information from elementary
considerations through to quantum computation schemes. We illustrate our
discussion with descriptions of experimental demonstrations of key
communication and processing tasks from the last decade and also look forward
to the key results likely in the next decade. We examine both discrete (single
photon) type processing as well as those which employ continuous variable
manipulations. The mathematical formalism is kept to the minimum needed to
understand the key theoretical and experimental results
Demonstration of quantum Zeno effect in a superconducting phase qubit
Quantum Zeno effect is a significant tool in quantum manipulating and
computing. We propose its observation in superconducting phase qubit with two
experimentally feasible measurement schemes. The conventional measurement
method is used to achieve the proposed pulse and continuous readout of the
qubit state, which are analyzed by projection assumption and Monte Carlo
wave-function simulation, respectively. Our scheme gives a direct
implementation of quantum Zeno effect in a superconducting phase qubit.Comment: 5 pages, 4 figure
Relativistic quantum clocks
The conflict between quantum theory and the theory of relativity is
exemplified in their treatment of time. We examine the ways in which their
conceptions differ, and describe a semiclassical clock model combining elements
of both theories. The results obtained with this clock model in flat spacetime
are reviewed, and the problem of generalizing the model to curved spacetime is
discussed, before briefly describing an experimental setup which could be used
to test of the model. Taking an operationalist view, where time is that which
is measured by a clock, we discuss the conclusions that can be drawn from these
results, and what clues they contain for a full quantum relativistic theory of
time.Comment: 12 pages, 4 figures. Invited contribution for the proceedings for
"Workshop on Time in Physics" Zurich 201
ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries
This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors
Synthesis, characterization and crystal structures of two new phenolic mannich bases
Two new Mannich bases, 5-methyl-2-((4-(pyridin-2-yl)piperazin-1-yl)methyl)phenol (1) and 5-methyl-2-((4-(4-nitrophenyl)piperazin-1-yl)methyl)phenol (2), were prepared and characterized structurally with elemental analysis, IR, UV and NMR spectroscopic techniques as well as single crystal X-ray diffraction. Compound I crystallizes in the monoclinic space group P21/c with unit cell dimensions a = 6.6726(2) Å, b = 17.0542(6) Å, c = 13.3222(4) Å, β = 100.832(1)°, V = 1489.00 (8) Å3, Z = 4, R1 = 0.0408, wR2 = 0.1143. Compound II crystallizes in the monoclinic space P21 with unit cell dimensions a = 5.9519(2) Å, b = 17.3315(8) Å, c = 15.7237(7) Å, β = 90.348(2)°, V = 1621.95(12) Å3, Z = 4, R1 = 0.0353, wR2 = 0.0965. Both compounds have their structures stabilized by hydrogen bonding and π∙∙∙π interactions. KEY WORDS: Mannich base, Piperazine, X-ray diffraction, Hydrogen bonds Bull. Chem. Soc. Ethiop. 2019, 33(2), 341-348.DOI: https://dx.doi.org/10.4314/bcse.v33i2.1
3-Methyl-1-phenyl-4-[(phenyl)(2-phenylhydrazin-1-yl)methylidene]-1H-pyrazol-5(4H)-one
The title compound, C23H20N4O, is a heterocyclic phenylhydrazone Schiff base with a pyrazole moiety. In the crystal, a variety of interactions occur, including N—H⋯π and π–π stacking between the phenyl ring of the phenylhydrazinyl group and its symmetry-generated equivalent [centroid–centroid distance = 3.6512 (7) Å]
- …
