1,404 research outputs found

    Perturbation of an Eigen-Value from a Dense Point Spectrum : An Example

    Get PDF
    We study a perturbed Floquet Hamiltonian K+βVK+\beta V depending on a coupling constant β\beta. The spectrum σ(K)\sigma(K) is assumed to be pure point and dense. We pick up an eigen-value, namely 0σ(K)0\in\sigma(K), and show the existence of a function λ(β)\lambda(\beta) defined on IRI\subset\R such that λ(β)σ(K+βV)\lambda(\beta) \in \sigma(K+\beta V) for all βI\beta\in I, 0 is a point of density for the set II, and the Rayleigh-Schr\"odinger perturbation series represents an asymptotic series for the function λ(β)\lambda(\beta). All ideas are developed and demonstrated when treating an explicit example but some of them are expected to have an essentially wider range of application.Comment: Latex, 24 pages, 51

    Weakly regular Floquet Hamiltonians with pure point spectrum

    Full text link
    We study the Floquet Hamiltonian: -i omega d/dt + H + V(t) as depending on the parameter omega. We assume that the spectrum of H is discrete, {h_m (m = 1..infinity)}, with h_m of multiplicity M_m. and that V is an Hermitian operator, 2pi-periodic in t. Let J > 0 and set Omega_0 = [8J/9,9J/8]. Suppose that for some sigma > 0: sum_{m,n such that h_m > h_n} mu_{mn}(h_m - h_n)^(-sigma) < infinity where mu_{mn} = sqrt(min{M_m,M_n)) M_m M_n. We show that in that case there exist a suitable norm to measure the regularity of V, denoted epsilon, and positive constants, epsilon_* & delta_*, such that: if epsilon |Omega_0| - delta_* epsilon and the Floquet Hamiltonian has a pure point spectrum for all omega in Omega_infinity.Comment: 35 pages, Latex with AmsAr

    Inverse Scattering at a Fixed Quasi-Energy for Potentials Periodic in Time

    Full text link
    We prove that the scattering matrix at a fixed quasi--energy determines uniquely a time--periodic potential that decays exponentially at infinity. We consider potentials that for each fixed time belong to L3/2L^{3/2} in space. The exponent 3/2 is critical for the singularities of the potential in space. For this singular class of potentials the result is new even in the time--independent case, where it was only known for bounded exponentially decreasing potentials.Comment: In this revised version I give a more detailed motivation of the class of potentials that I consider and I have corrected some typo

    On the energy growth of some periodically driven quantum systems with shrinking gaps in the spectrum

    Full text link
    We consider quantum Hamiltonians of the form H(t)=H+V(t) where the spectrum of H is semibounded and discrete, and the eigenvalues behave as E_n~n^\alpha, with 0<\alpha<1. In particular, the gaps between successive eigenvalues decay as n^{\alpha-1}. V(t) is supposed to be periodic, bounded, continuously differentiable in the strong sense and such that the matrix entries with respect to the spectral decomposition of H obey the estimate |V(t)_{m,n}|0, p>=1 and \gamma=(1-\alpha)/2. We show that the energy diffusion exponent can be arbitrarily small provided p is sufficiently large and \epsilon is small enough. More precisely, for any initial condition \Psi\in Dom(H^{1/2}), the diffusion of energy is bounded from above as _\Psi(t)=O(t^\sigma) where \sigma=\alpha/(2\ceil{p-1}\gamma-1/2). As an application we consider the Hamiltonian H(t)=|p|^\alpha+\epsilon*v(\theta,t) on L^2(S^1,d\theta) which was discussed earlier in the literature by Howland

    Excitation of Small Quantum Systems by High-Frequency Fields

    Full text link
    The excitation by a high frequency field of multi--level quantum systems with a slowly varying density of states is investigated. A general approach to study such systems is presented. The Floquet eigenstates are characterized on several energy scales. On a small scale, sharp universal quasi--resonances are found, whose shape is independent of the field parameters and the details of the system. On a larger scale an effective tight--binding equation is constructed for the amplitudes of these quasi--resonances. This equation is non--universal; two classes of examples are discussed in detail.Comment: 4 pages, revtex, no figure

    Neurophysiology

    Get PDF
    Contains reports on seven research projects.National Institutes of Health (Training Grant 5 TO1 EY00090)Bell Laboratories (Grant

    An Experimental Approach to a Rapid Propulsion and Aeronautics Concepts Testbed

    Get PDF
    Modern aircraft design tools have limitations for predicting complex propulsion-airframe interactions. The demand for new tools and methods addressing these limitations is high based on the many recent Distributed Electric Propulsion (DEP) Vertical Take-Off and Landing (VTOL) concepts being developed for Urban Air Mobility (UAM) markets. We propose that low cost electronics and additive manufacturing can support the conceptual design of advanced autonomy-enabled concepts, by facilitating rapid prototyping for experimentally driven design cycles. This approach has the potential to reduce complex aircraft concept development costs, minimize unique risks associated with the conceptual design, and shorten development schedule by enabling the determination of many "unknown unknowns" earlier in the design process and providing verification of the results from aircraft design tools. A modular testbed was designed and built to evaluate this rapid design-build-test approach and to support aeronautics and autonomy research targeting UAM applications utilizing a complex, transitioning-VTOL aircraft configuration. The testbed is a modular wind tunnel and flight model. The testbed airframe is approximately 80% printed, with labor required for assembly. This paper describes the design process, fabrication process, ground testing, and initial wind tunnel structural and thermal loading of a proof-of-concept aircraft, the Langley Aerodrome 8 (LA-8)

    Time Dependent Floquet Theory and Absence of an Adiabatic Limit

    Full text link
    Quantum systems subject to time periodic fields of finite amplitude, lambda, have conventionally been handled either by low order perturbation theory, for lambda not too large, or by exact diagonalization within a finite basis of N states. An adiabatic limit, as lambda is switched on arbitrarily slowly, has been assumed. But the validity of these procedures seems questionable in view of the fact that, as N goes to infinity, the quasienergy spectrum becomes dense, and numerical calculations show an increasing number of weakly avoided crossings (related in perturbation theory to high order resonances). This paper deals with the highly non-trivial behavior of the solutions in this limit. The Floquet states, and the associated quasienergies, become highly irregular functions of the amplitude, lambda. The mathematical radii of convergence of perturbation theory in lambda approach zero. There is no adiabatic limit of the wave functions when lambda is turned on arbitrarily slowly. However, the quasienergy becomes independent of time in this limit. We introduce a modification of the adiabatic theorem. We explain why, in spite of the pervasive pathologies of the Floquet states in the limit N goes to infinity, the conventional approaches are appropriate in almost all physically interesting situations.Comment: 13 pages, Latex, plus 2 Postscript figure

    Propagator of a Charged Particle with a Spin in Uniform Magnetic and Perpendicular Electric Fields

    Full text link
    We construct an explicit solution of the Cauchy initial value problem for the time-dependent Schroedinger equation for a charged particle with a spin moving in a uniform magnetic field and a perpendicular electric field varying with time. The corresponding Green function (propagator) is given in terms of elementary functions and certain integrals of the fields with a characteristic function, which should be found as an analytic or numerical solution of the equation of motion for the classical oscillator with a time-dependent frequency. We discuss a particular solution of a related nonlinear Schroedinger equation and some special and limiting cases are outlined.Comment: 17 pages, no figure
    corecore