1,404 research outputs found
Perturbation of an Eigen-Value from a Dense Point Spectrum : An Example
We study a perturbed Floquet Hamiltonian depending on a coupling
constant . The spectrum is assumed to be pure point and
dense. We pick up an eigen-value, namely , and show the
existence of a function defined on such that
for all , 0 is a point of
density for the set , and the Rayleigh-Schr\"odinger perturbation series
represents an asymptotic series for the function . All ideas
are developed and demonstrated when treating an explicit example but some of
them are expected to have an essentially wider range of application.Comment: Latex, 24 pages, 51
Weakly regular Floquet Hamiltonians with pure point spectrum
We study the Floquet Hamiltonian: -i omega d/dt + H + V(t) as depending on
the parameter omega. We assume that the spectrum of H is discrete, {h_m (m =
1..infinity)}, with h_m of multiplicity M_m. and that V is an Hermitian
operator, 2pi-periodic in t. Let J > 0 and set Omega_0 = [8J/9,9J/8]. Suppose
that for some sigma > 0: sum_{m,n such that h_m > h_n} mu_{mn}(h_m -
h_n)^(-sigma) < infinity where mu_{mn} = sqrt(min{M_m,M_n)) M_m M_n. We show
that in that case there exist a suitable norm to measure the regularity of V,
denoted epsilon, and positive constants, epsilon_* & delta_*, such that: if
epsilon
|Omega_0| - delta_* epsilon and the Floquet Hamiltonian has a pure point
spectrum for all omega in Omega_infinity.Comment: 35 pages, Latex with AmsAr
Inverse Scattering at a Fixed Quasi-Energy for Potentials Periodic in Time
We prove that the scattering matrix at a fixed quasi--energy determines
uniquely a time--periodic potential that decays exponentially at infinity. We
consider potentials that for each fixed time belong to in space. The
exponent 3/2 is critical for the singularities of the potential in space. For
this singular class of potentials the result is new even in the
time--independent case, where it was only known for bounded exponentially
decreasing potentials.Comment: In this revised version I give a more detailed motivation of the
class of potentials that I consider and I have corrected some typo
On the energy growth of some periodically driven quantum systems with shrinking gaps in the spectrum
We consider quantum Hamiltonians of the form H(t)=H+V(t) where the spectrum
of H is semibounded and discrete, and the eigenvalues behave as E_n~n^\alpha,
with 0<\alpha<1. In particular, the gaps between successive eigenvalues decay
as n^{\alpha-1}. V(t) is supposed to be periodic, bounded, continuously
differentiable in the strong sense and such that the matrix entries with
respect to the spectral decomposition of H obey the estimate
|V(t)_{m,n}|0,
p>=1 and \gamma=(1-\alpha)/2. We show that the energy diffusion exponent can be
arbitrarily small provided p is sufficiently large and \epsilon is small
enough. More precisely, for any initial condition \Psi\in Dom(H^{1/2}), the
diffusion of energy is bounded from above as _\Psi(t)=O(t^\sigma) where
\sigma=\alpha/(2\ceil{p-1}\gamma-1/2). As an application we consider the
Hamiltonian H(t)=|p|^\alpha+\epsilon*v(\theta,t) on L^2(S^1,d\theta) which was
discussed earlier in the literature by Howland
Excitation of Small Quantum Systems by High-Frequency Fields
The excitation by a high frequency field of multi--level quantum systems with
a slowly varying density of states is investigated. A general approach to study
such systems is presented. The Floquet eigenstates are characterized on several
energy scales. On a small scale, sharp universal quasi--resonances are found,
whose shape is independent of the field parameters and the details of the
system. On a larger scale an effective tight--binding equation is constructed
for the amplitudes of these quasi--resonances. This equation is non--universal;
two classes of examples are discussed in detail.Comment: 4 pages, revtex, no figure
Neurophysiology
Contains reports on seven research projects.National Institutes of Health (Training Grant 5 TO1 EY00090)Bell Laboratories (Grant
An Experimental Approach to a Rapid Propulsion and Aeronautics Concepts Testbed
Modern aircraft design tools have limitations for predicting complex propulsion-airframe interactions. The demand for new tools and methods addressing these limitations is high based on the many recent Distributed Electric Propulsion (DEP) Vertical Take-Off and Landing (VTOL) concepts being developed for Urban Air Mobility (UAM) markets. We propose that low cost electronics and additive manufacturing can support the conceptual design of advanced autonomy-enabled concepts, by facilitating rapid prototyping for experimentally driven design cycles. This approach has the potential to reduce complex aircraft concept development costs, minimize unique risks associated with the conceptual design, and shorten development schedule by enabling the determination of many "unknown unknowns" earlier in the design process and providing verification of the results from aircraft design tools. A modular testbed was designed and built to evaluate this rapid design-build-test approach and to support aeronautics and autonomy research targeting UAM applications utilizing a complex, transitioning-VTOL aircraft configuration. The testbed is a modular wind tunnel and flight model. The testbed airframe is approximately 80% printed, with labor required for assembly. This paper describes the design process, fabrication process, ground testing, and initial wind tunnel structural and thermal loading of a proof-of-concept aircraft, the Langley Aerodrome 8 (LA-8)
Time Dependent Floquet Theory and Absence of an Adiabatic Limit
Quantum systems subject to time periodic fields of finite amplitude, lambda,
have conventionally been handled either by low order perturbation theory, for
lambda not too large, or by exact diagonalization within a finite basis of N
states. An adiabatic limit, as lambda is switched on arbitrarily slowly, has
been assumed. But the validity of these procedures seems questionable in view
of the fact that, as N goes to infinity, the quasienergy spectrum becomes
dense, and numerical calculations show an increasing number of weakly avoided
crossings (related in perturbation theory to high order resonances). This paper
deals with the highly non-trivial behavior of the solutions in this limit. The
Floquet states, and the associated quasienergies, become highly irregular
functions of the amplitude, lambda. The mathematical radii of convergence of
perturbation theory in lambda approach zero. There is no adiabatic limit of the
wave functions when lambda is turned on arbitrarily slowly. However, the
quasienergy becomes independent of time in this limit. We introduce a
modification of the adiabatic theorem. We explain why, in spite of the
pervasive pathologies of the Floquet states in the limit N goes to infinity,
the conventional approaches are appropriate in almost all physically
interesting situations.Comment: 13 pages, Latex, plus 2 Postscript figure
Weaknesses in the fundamental processes among secondary school general mathematics pupils.
Thesis (M.A.)--Boston Universit
Propagator of a Charged Particle with a Spin in Uniform Magnetic and Perpendicular Electric Fields
We construct an explicit solution of the Cauchy initial value problem for the
time-dependent Schroedinger equation for a charged particle with a spin moving
in a uniform magnetic field and a perpendicular electric field varying with
time. The corresponding Green function (propagator) is given in terms of
elementary functions and certain integrals of the fields with a characteristic
function, which should be found as an analytic or numerical solution of the
equation of motion for the classical oscillator with a time-dependent
frequency. We discuss a particular solution of a related nonlinear Schroedinger
equation and some special and limiting cases are outlined.Comment: 17 pages, no figure
- …
