3,213 research outputs found
Near Infrared Observations of a Redshift 4.92 Galaxy: Evidence for Significant Dust Absorption
Near-infrared imaging and spectroscopy have been obtained of the
gravitationally lensed galaxy at z=4.92 discovered in HST images by Franx et
al. (1997). Images at 1.2, 1.6 and 2.2 microns show the same arc morphology as
the HST images. The spectrum with resolution \lambda / \Delta\lambda ~ 70 shows
no emission lines with equivalent width stronger than 100 A in the rest frame
wavelength range 0.34 to 0.40 microns. In particular, [OII]3727 A and
[NeIII]3869 A are not seen. The energy distribution is quite blue, as expected
for a young stellar population with the observed Ly alpha flux. The spectral
energy distribution can be fit satisfactorily for such a young stellar
population when absorption by dust is included. The models imply a reddening
0.1 mag < E(B-V) < 0.4 mag. The stellar mass of the lensed galaxy lies in the
range of 2 to 16 x 10^9 Msun. This is significantly higher than estimates based
on the HST data alone. Our data imply that absorption by dust is important to
redshifts of ~5.Comment: LaTeX with ApJ journal format, 2 postscript figures, ApJL, accepte
Low Star Formation Rates for z=1 Early-Type Galaxies in the Very Deep GOODS-MIPS Imaging: Implications for their Optical/Near-Infrared Spectral Energy Distributions
We measure the obscured star formation in z~1 early-type galaxies. This
constrains the influence of star formation on their optical/near-IR colors,
which, we found, are redder than predicted by the model by Bruzual & Charlot
(2003). From deep ACS imaging we construct a sample of 95 morphologically
selected early-type galaxies in the HDF-N and CDF-S with spectroscopic
redshifts in the range 0.85<z<1.15. We measure their 24 micron fluxes from the
deep GOODS-MIPS imaging and derive the IR luminosities and star formation
rates. The fraction of galaxies with >2 sigma detections (~25 muJy} is
17(-4,+9)%. Of the 15 galaxies with significant detections at least six have an
AGN. Stacking the MIPS images of the galaxies without significant detections
and adding the detected galaxies without AGN we find an upper limit on the mean
star formation rate (SFR) of 5.2+/-3.0 Msol yr^-1, and on the mean specific SFR
of 4.6+/-2.2 * 10^-11 yr^-1. Under the assumption that the average SFR will
decline at the same rate as the cosmic average, the in situ growth in stellar
mass of the early-type galaxy population is less than 14+/-7% between z=1 and
the present. We show that the typically low IR luminosity and SFR imply that
the effect of obscured star formation (or AGN) on their rest-frame
optical/near-IR SEDs is negligible for ~90% of the galaxies in our sample.
Hence, their optical/near-IR colors are most likely dominated by evolved
stellar populations. This implies that the colors predicted by the Bruzual &
Charlot (2003) model for stellar populations with ages similar to those of z~1
early-type galaxies (~1-3 Gyr) are most likely too blue, and that stellar
masses of evolved, high-redshift galaxies can be overestimated by up to a
factor of ~2.Comment: Accepted for publication in ApJ, 8 pages, 4 figures, 1 tabl
Constraints on z~10 Galaxies from the Deepest HST NICMOS Fields
We use all available fields with deep NICMOS imaging to search for J dropouts
(H<28) at z~10. Our primary data set for this search were the two J+H NICMOS
parallel fields taken with the ACS HUDF. The 5 sigma limiting mags were 28.6 in
J and 28.5 in H. Several shallower fields were also used: J+H NICMOS frames
available over the HDF North, the HDF South NICMOS parallel, and the ACS HUDF.
The primary selection criterion was (J-H)>1.8. 11 such sources were found in
all search fields using this criterion. 8 of these were clearly ruled out as
credible z~10 sources, either as a result of detections (>2 sigma) blueward of
J or their colors redward of the break (H-K~1.5). The nature of the 3 remaining
sources could not be determined from the data. The number appears consistent
with the expected contamination from low-z interlopers. Analysis of the stacked
images for the 3 candidates also suggests contamination. Regardless of their
true redshifts, the actual number of z~10 sources must be <=3. To assess the
significance of these results, two lower redshift samples (a z~3.8 B-dropout
and z~6 i-dropout sample) were projected to z~8-12 using a (1+z)^{-1} size
scaling. They were added to the image frames, and the selection repeated,
giving 15.6 and 4.8 J-dropouts, respectively. This suggests that to the limit
of this probe (0.3 L*) there has been evolution from z~3.8 and possibly from
z~6. This is consistent with the strong evolution already noted at z~6 and
z~7.5 relative to z~3-4. Even assuming that 3 sources from this probe are at
z~10, the rest-frame continuum UV (~1500 A) luminosity density at z~10
(integrated down to 0.3 L*) is just 0.19_{-0.09}^{+0.13}x that at z~3.8 (or
0.19_{-0.10}^{+0.15}x including cosmic variance). However, if none of our
sources is at z~10, this ratio has a 1 sigma upper limit of 0.07. (abridged)Comment: 13 pages, 3 figures, 2 tables, accepted for publication in the
Astrophysical Journal Letter
Line Strengths in Early-Type Cluster Galaxies at z=0.33: Implications for alpha/Fe, Nitrogen and the Histories of E/S0s
[Heavily Abbreviated] In this paper we analyze previously published spectra
with high signal-to-noise ratios of E/S0 galaxies in the rich cluster CL1358+62
at z=0.33, and introduce techniques for fitting stellar population models to
the data. Here we focus on the 19 E and S0 galaxies with an homogeneous set of
eight blue Lick indices. We explore the galaxy properties using six-parameter
stellar population models from the literature, and describe an approach for
fitting the models differentially, such that the largest systematic errors are
avoided. We find: (1) no differences between the stellar population parameters
of Es and S0s, at fixed sigma; (2) the stars in the Es and S0s are uniformly
old, consistent with previously published results using M/L ratios; (3) a
significant correlation of [Z/H] with sigma, in a manner consistent with the
observed B-V colors of the galaxies; (4) no significant correlation of
[alpha/Fe] with sigma; and (5) a significant anti-correlation of [alpha/N] with
[Z/H], which we interpret as the signature of secondary nitrogen. Neither
[alpha/C], nor [alpha/Ca] shows significant variation. While the differences
between our conclusions and the current view of stellar populations may point
to serious deficiencies, our deduced correlation of mean metallicity with sigma
does reproduce the B-V colors of the galaxies, as well as the slope of the
local Mg-sigma relation. In matching the inferred population trends with
published data on nearby galaxies, the line strength-line width relations match
well, save for the narrow iron indices. Taken together, these results reduce
early-type galaxies in clusters to a family with one-parameter, velocity
dispersion, greatly simplifying scenarios for their formation and evolution.Comment: Accepted for publication in ApJ. 15 figures. (the new version has had
some very minor changes, and some more typographical errors fixed
The Evolution of Rest-Frame K-band Properties of Early-Type Galaxies from z=1 to the Present
We measure the evolution of the rest-frame K-band Fundamental Plane from z=1
to the present by using IRAC imaging of a sample of early-type galaxies in the
Chandra Deep Field-South at z~1 with accurately measured dynamical masses. We
find that evolves as , which is
slower than in the B-band (). In the B-band
the evolution has been demonstrated to be strongly mass dependent. In the
K-band we find a weaker trend: galaxies more massive than
evolve as ;
less massive galaxies evolve as . As
expected from stellar population models the evolution in is slower than
the evolution in . However, when we make a quantitative comparison, we
find that the single burst Bruzual-Charlot models do not fit the results well,
unless large dust opacities are allowed at z=1. Models with a flat IMF fit
better, Maraston models with a different treatment of AGB stars fit best. These
results show that the interpretation of rest-frame near-IR photometry is
severely hampered by model uncertainties and therefore that the determination
of galaxy masses from rest-frame near-IR photometry may be harder than was
thought before.Comment: 5 pages, 3 figures, Accepted for publication in ApJ
Spitzer IRAC confirmation of z_850-dropout galaxies in the Hubble Ultra Deep Field: stellar masses and ages at z~7
Using Spitzer IRAC mid-infrared imaging from the Great Observatories Origins
Deep Survey, we study z_850-dropout sources in the Hubble Ultra Deep Field.
After carefully removing contaminating flux from foreground sources, we clearly
detect two z_850-dropouts at 3.6 micron and 4.5 micron, while two others are
marginally detected. The mid-infrared fluxes strongly support their
interpretation as galaxies at z~7, seen when the Universe was only 750 Myr old.
The IRAC observations allow us for the first time to constrain the rest-frame
optical colors, stellar masses, and ages of the highest redshift galaxies.
Fitting stellar population models to the spectral energy distributions, we find
photometric redshifts in the range 6.7-7.4, rest-frame colors U-V=0.2-0.4,
V-band luminosities L_V=0.6-3 x 10^10 L_sun, stellar masses 1-10 x 10^9 M_sun,
stellar ages 50-200 Myr, star formation rates up to ~25 M_sun/yr, and low
reddening A_V<0.4. Overall, the z=7 galaxies appear substantially less massive
and evolved than Lyman break galaxies or Distant Red Galaxies at z=2-3, but
fairly similar to recently identified systems at z=5-6. The stellar mass
density inferred from our z=7 sample is rho* = 1.6^{+1.6}_{-0.8} x 10^6 M_sun
Mpc^-3 (to 0.3 L*(z=3)), in apparent agreement with recent cosmological
hydrodynamic simulations, but we note that incompleteness and sample variance
may introduce larger uncertainties. The ages of the two most massive galaxies
suggest they formed at z>8, during the era of cosmic reionization, but the star
formation rate density derived from their stellar masses and ages is not nearly
sufficient to reionize the universe. The simplest explanation for this
deficiency is that lower-mass galaxies beyond our detection limit reionized the
universe.Comment: 4 pages, 3 figures, emulateapj, Accepted for publication in ApJ
Letter
- …
