34 research outputs found
Towards Waveform Heliotomography: Observing Interactions of Helioseismic Waves with a Sunspot
We investigate how helioseismic waves that originate from effective point
sources interact with a sunspot. These waves are reconstructed from observed
stochastic wavefields on the Sun by cross-correlating photospheric
Doppler-velocity signals. We select the wave sources at different locations
relative to the sunspot, and investigate the p- and f-mode waves separately.
The results reveal a complicated picture of waveform perturbations caused by
the wave interaction with the sunspot. In particular, it is found that for
waves originating from outside of the sunspot, p-mode waves travel across the
sunspot with a small amplitude reduction and slightly higher speed, and wave
amplitude and phase get mostly restored to the quiet-Sun values after passing
the sunspot. The f-mode wave experiences some amplitude reduction passing
through the sunspot, and the reduced amplitude is not recovered after that. The
wave-propagation speed does not change before encountering the sunspot and
inside the sunspot, but the wavefront becomes faster than the reference wave
after passing through the sunspot. For waves originating from inside the
sunspot umbra, both f- and p-mode waves show significant amplitude reductions
and faster speed during all courses of propagation. A comparison of positive
and negative time lags of cross-correlation functions shows an apparent
asymmetry in the waveform changes for both the f- and p-mode waves. We suggest
that the waveform variations of the helioseismic waves interacting with a
sunspot found in this article can be used for developing a method of waveform
heliotomography, similar to the waveform tomography of the Earth.Comment: accepted for publication in Solar Physic
Signatures of Emerging Subsurface Structures in Acoustic Power Maps
We show that under certain conditions, subsurface structures in the solar
interior can alter the average acoustic power observed at the photosphere above
them. By using numerical simulations of wave propagation, we show that this
effect is large enough for it to be potentially used for detecting emerging
active regions before they appear on the surface. In our simulations,
simplified subsurface structures are modeled as regions with enhanced or
reduced acoustic wave speed. We investigate the dependence of the acoustic
power above a subsurface region on the sign, depth, and strength of the wave
speed perturbation. Observations from the Solar and Heliospheric
Observatory/Michelson Doppler Imager (SOHO/MDI) prior and during the emergence
of NOAA active region 10488 are used to test the use of acoustic power as a
potential precursor of magnetic flux emergence.Comment: 7 pages, 5 figures, accepted for publication in Solar Physics on 21
March 201
From Predicting Solar Activity to Forecasting Space Weather: Practical Examples of Research-to-Operations and Operations-to-Research
The successful transition of research to operations (R2O) and operations to
research (O2R) requires, above all, interaction between the two communities. We
explore the role that close interaction and ongoing communication played in the
successful fielding of three separate developments: an observation platform, a
numerical model, and a visualization and specification tool. Additionally, we
will examine how these three pieces came together to revolutionize
interplanetary coronal mass ejection (ICME) arrival forecasts. A discussion of
the importance of education and training in ensuring a positive outcome from
R2O activity follows. We describe efforts by the meteorological community to
make research results more accessible to forecasters and the applicability of
these efforts to the transfer of space-weather research.We end with a
forecaster "wish list" for R2O transitions. Ongoing, two-way communication
between the research and operations communities is the thread connecting it
all.Comment: 18 pages, 3 figures, Solar Physics in pres
Time--Distance Helioseismology Data Analysis Pipeline for Helioseismic and Magnetic Imager onboard Solar Dynamics Observatory (SDO/HMI) and Its Initial Results
The Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory
(SDO/HMI) provides continuous full-disk observations of solar oscillations. We
develop a data-analysis pipeline based on the time-distance helioseismology
method to measure acoustic travel times using HMI Doppler-shift observations,
and infer solar interior properties by inverting these measurements. The
pipeline is used for routine production of near-real-time full-disk maps of
subsurface wave-speed perturbations and horizontal flow velocities for depths
ranging from 0 to 20 Mm, every eight hours. In addition, Carrington synoptic
maps for the subsurface properties are made from these full-disk maps. The
pipeline can also be used for selected target areas and time periods. We
explain details of the pipeline organization and procedures, including
processing of the HMI Doppler observations, measurements of the travel times,
inversions, and constructions of the full-disk and synoptic maps. Some initial
results from the pipeline, including full-disk flow maps, sunspot subsurface
flow fields, and the interior rotation and meridional flow speeds, are
presented.Comment: Accepted by Solar Physics topical issue 'Solar Dynamics Observatory
Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results
The chromosphere is a thin layer of the solar atmosphere that bridges the
relatively cool photosphere and the intensely heated transition region and
corona. Compressible and incompressible waves propagating through the
chromosphere can supply significant amounts of energy to the interface region
and corona. In recent years an abundance of high-resolution observations from
state-of-the-art facilities have provided new and exciting ways of
disentangling the characteristics of oscillatory phenomena propagating through
the dynamic chromosphere. Coupled with rapid advancements in
magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly
investigate the role waves play in supplying energy to sustain chromospheric
and coronal heating. Here, we review the recent progress made in
characterising, categorising and interpreting oscillations manifesting in the
solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review
