1,514 research outputs found

    Composite-Fermion Theory for Pseudogap, Fermi Arc, Hole Pocket, and Non-Fermi-Liquid of Underdoped Cuprate Superconductors

    Full text link
    We propose that an extension of the exciton concept to doped Mott insulators offers a fruitful insight into challenging issues of the copper oxide superconductors. In our extension, new fermionic excitations called cofermions emerge in conjunction to generalized excitons. The cofermions hybridize with conventional quasiparticles. Then a hybridization gap opens, and is identified as the pseudogap observed in the underdoped cuprates. The resultant Fermi-surface reconstruction naturally explains a number of unusual properties of the underdoped cuprates, such as the Fermi arc and/or pocket formation.Comment: 9 pages, 8 figure

    Self-Organization of Reconnecting Plasmas to Marginal Collisionality in the Solar Corona

    Full text link
    We explore the suggestions by Uzdensky (2007) and Cassak et al. (2008) that coronal loops heated by magnetic reconnection should self-organize to a state of marginal collisionality. We discuss their model of coronal loop dynamics with a one-dimensional hydrodynamic calculation. We assume that many current sheets are present, with a distribution of thicknesses, but that only current sheets thinner than the ion skin depth can rapidly reconnect. This assumption naturally causes a density dependent heating rate which is actively regulated by the plasma. We report 9 numerical simulation results of coronal loop hydrodynamics in which the absolute values of the heating rates are different but their density dependences are the same. We find two regimes of behavior, depending on the amplitude of the heating rate. In the case that the amplitude of heating is below a threshold value, the loop is in stable equilibrium. Typically the upper and less dense part of coronal loop is collisionlessly heated and conductively cooled. When the amplitude of heating is above the threshold, the conductive flux to the lower atmosphere required to balance collisionless heating drives an evaporative flow which quenches fast reconnection, ultimately cooling and draining the loop until the cycle begins again. The key elements of this cycle are gravity and the density dependence of the heating function. Some additional factors are present, including pressure driven flows from the loop top, which carry a large enthalpy flux and play an important role in reducing the density. We find that on average the density of the system is close to the marginally collisionless value.Comment: accepted for publication in The Astrophysical Journal, 33 pages, 12 figure

    Fate of Quasiparticle at Mott Transition and Interplay with Lifshitz Transition Studied by Correlator Projection Method

    Full text link
    Filling-control metal-insulator transition on the two-dimensional Hubbard model is investigated by using the correlator projection method, which takes into account momentum dependence of the free energy beyond the dynamical mean-field theory. The phase diagram of metals and Mott insulators is analyzed. Lifshitz transitions occur simultaneously with metal-insulator transitions at large Coulomb repulsion. On the other hand, they are separated each other for lower Coulomb repulsion, where the phase sandwiched by the Lifshitz and metal-insulator transitions appears to show violation of the Luttinger sum rule. Through the metal-insulator transition, quasiparticles retain nonzero renormalization factor and finite quasi-particle weight in the both sides of the transition. This supports that the metal-insulator transition is caused not by the vanishing renormalization factor but by the relative shift of the Fermi level into the Mott gap away from the quasiparticle band, in sharp contrast with the original dynamical mean-field theory. Charge compressibility diverges at the critical end point of the first-order Lifshitz transition at finite temperatures. The origin of the divergence is ascribed to singular momentum dependence of the quasiparticle dispersion.Comment: 24 pages including 10 figure

    Photometric Studies of a WZ Sge-Type Dwarf Nova Candidate, ASAS160048-4846.2

    Full text link
    We report on our time-resolved CCD photometry during the 2005 June superoutburst of a WZ Sge-type dwarf nova candidate, ASAS 160048-4846.2. The ordinary superhumps underwent a complex evolution during the superoutburst. The superhump amplitude experienced a regrowth, and had two peaks. The superhump period decreased when the superhump amplitude reached to the first maximum, successively gradually increased until the second maximum of the amplitude, and finally decreased again. Investigating other SU UMa-type dwarf novae which show an increase of the superhump period, we found the same trend of the superhump evolution in superoutbursts of them. We speculate that the superhump regrowth in the amplitude has a close relation to the increase of the superhump period, and all of SU UMa-type dwarf novae with a superhump regrowth follow the same evolution of the ordinary superhumps as that of ASAS 160048-4846.2.Comment: 7 pages, 4 figure

    Superconductivity Driven by the Interband Coulomb Interaction and Implications for the Superconducting Mechanism of MgB2

    Full text link
    Superconducting mechanism mediated by interband exchange Coulomb repulsion is examined in an extended two-band Hubbard models with a wide band crossing the Fermi level and coexisting with a narrower band located at moderately lower energy. We apply newly developed path-integral renormalization group method to reliably calculate pairing correlations. The correlation shows marked enhancement at moderate amplitudes of the exchange Coulomb repulsion taken smaller than the on-site repulsion for the narrower band. The pairing symmetry is s-wave while it has unconventional phases with the opposite sign between the order parameters on the two bands, in agreement with the mean-field prediction. Since the band structure of recently discovered superconductor MgB2_2 shares basic similarities with our model, we propose that the present results provide a relevant clue for the understanding of the superconducting mechanism in MgB2_2 as well as in this class of multi-band materials with good metallic conduction in the normal state.Comment: 4pages, 2figure

    Insulator-Metal Transition in the One and Two-Dimensional Hubbard Models

    Full text link
    We use Quantum Monte Carlo methods to determine T=0T=0 Green functions, G(r,ω)G(\vec{r}, \omega), on lattices up to 16×1616 \times 16 for the 2D Hubbard model at U/t=4U/t =4. For chemical potentials, μ\mu, within the Hubbard gap, μ<μc |\mu | < \mu_c, and at {\it long} distances, r\vec{r}, G(r,ω=μ)er/ξlG(\vec{r}, \omega = \mu) \sim e^{ -|\vec{r}|/\xi_l} with critical behavior: ξlμμcν\xi_l \sim | \mu - \mu_c |^{-\nu}, ν=0.26±0.05 \nu = 0.26 \pm 0.05. This result stands in agreement with the assumption of hyperscaling with correlation exponent ν=1/4\nu = 1/4 and dynamical exponent z=4z = 4. In contrast, the generic band insulator as well as the metal-insulator transition in the 1D Hubbard model are characterized by ν=1/2\nu = 1/2 and z=2z = 2.Comment: 9 pages (latex) and 5 postscript figures. Submitted for publication in Phys. Rev. Let

    A gapless charge mode induced by the boundary states in the half-filled Hubbard open-chain

    Full text link
    We discuss the ground state and some excited states of the half-filled Hubbard model defined on an open chain with L sites, where only one of the boundary sites has a different value of chemical potential. We consider the case when the boundary site has a negative chemical potential -p and the Hubbard coupling U is positive. By an analytic method we show that when p is larger than the transfer integral some of the ground-state solutions of the Bethe ansatz equations become complex-valued. It follows that there is a ``surface phase transition'' at some critical value p_c; when p<p_c all the charge excitations have the gap for the half-filled band, while there exists a massless charge mode when p>p_c.Comment: Revtex, 25 pages, 3 eps figures; Full revision with Appendixes adde

    Quantum Mott Transition and Multi-Furcating Criticality

    Full text link
    Phenomenological theory of the Mott transition is presented. When the critical temperature of the Mott transition is much higher than the quantum degeneracy temperature, the transition is essentially described by the Ising universality class. Below the critical temperature, phase separation or first-order transition occurs. However, if the critical point is involved in the Fermi degeneracy region, a marginal quantum critical point appears at zero temperature. The originally single Mott critical point generates subsequent many unstable fixed points through various Fermi surface instabilities induced by the Mott criticality characterized by the diverging charge susceptibility or doublon susceptibility. This occurs in marginal quantum-critical region. Charge, magnetic and superconducting instabilitites compete severely under these critical charge fluctuations. The quantum Mott transition triggers multi-furcating criticality, which goes beyond the conventional concept of multicriticality in quantum phase transitions. Near the quantum Mott transition, the criticality generically drives growth of inhomogeneous structure in the momentum space with singular points of flat dispersion on the Fermi surface. The singular points determine the quantum dynamics of the Mott transition by the dynamical exponent z=4z=4. We argue that many of filling-control Mott transitions are classified to this category. Recent numerical results as well as experimental results on strongly correlated systems including transition metal oxides, organic materials and 3^3He layer adsorbed on a substrate are consistently analyzed especially in two-dimensional systems.Comment: 28 pages including 2 figure

    Quantum Transition between an Antiferromagnetic Mott Insulator and dx2y2d_{x^2 - y^2} Superconductor in Two Dimensions

    Full text link
    We consider a Hubbard model on a square lattice with an additional interaction, WW, which depends upon the square of a near-neighbor hopping. At half-filling and a constant value of the Hubbard repulsion, increasing the strength of the interaction WW drives the system from an antiferromagnetic Mott insulator to a dx2y2d_{x^2 -y^2} superconductor. This conclusion is reached on the basis of zero temperature quantum Monte Carlo simulations on lattice sizes up to 16×1616 \times 16.Comment: 4 pages (latex) and 4 postscript figure
    corecore