1,514 research outputs found
Composite-Fermion Theory for Pseudogap, Fermi Arc, Hole Pocket, and Non-Fermi-Liquid of Underdoped Cuprate Superconductors
We propose that an extension of the exciton concept to doped Mott insulators
offers a fruitful insight into challenging issues of the copper oxide
superconductors. In our extension, new fermionic excitations called cofermions
emerge in conjunction to generalized excitons. The cofermions hybridize with
conventional quasiparticles. Then a hybridization gap opens, and is identified
as the pseudogap observed in the underdoped cuprates. The resultant
Fermi-surface reconstruction naturally explains a number of unusual properties
of the underdoped cuprates, such as the Fermi arc and/or pocket formation.Comment: 9 pages, 8 figure
Self-Organization of Reconnecting Plasmas to Marginal Collisionality in the Solar Corona
We explore the suggestions by Uzdensky (2007) and Cassak et al. (2008) that
coronal loops heated by magnetic reconnection should self-organize to a state
of marginal collisionality. We discuss their model of coronal loop dynamics
with a one-dimensional hydrodynamic calculation. We assume that many current
sheets are present, with a distribution of thicknesses, but that only current
sheets thinner than the ion skin depth can rapidly reconnect. This assumption
naturally causes a density dependent heating rate which is actively regulated
by the plasma. We report 9 numerical simulation results of coronal loop
hydrodynamics in which the absolute values of the heating rates are different
but their density dependences are the same. We find two regimes of behavior,
depending on the amplitude of the heating rate. In the case that the amplitude
of heating is below a threshold value, the loop is in stable equilibrium.
Typically the upper and less dense part of coronal loop is collisionlessly
heated and conductively cooled. When the amplitude of heating is above the
threshold, the conductive flux to the lower atmosphere required to balance
collisionless heating drives an evaporative flow which quenches fast
reconnection, ultimately cooling and draining the loop until the cycle begins
again. The key elements of this cycle are gravity and the density dependence of
the heating function. Some additional factors are present, including pressure
driven flows from the loop top, which carry a large enthalpy flux and play an
important role in reducing the density. We find that on average the density of
the system is close to the marginally collisionless value.Comment: accepted for publication in The Astrophysical Journal, 33 pages, 12
figure
Fate of Quasiparticle at Mott Transition and Interplay with Lifshitz Transition Studied by Correlator Projection Method
Filling-control metal-insulator transition on the two-dimensional Hubbard
model is investigated by using the correlator projection method, which takes
into account momentum dependence of the free energy beyond the dynamical
mean-field theory. The phase diagram of metals and Mott insulators is analyzed.
Lifshitz transitions occur simultaneously with metal-insulator transitions at
large Coulomb repulsion. On the other hand, they are separated each other for
lower Coulomb repulsion, where the phase sandwiched by the Lifshitz and
metal-insulator transitions appears to show violation of the Luttinger sum
rule. Through the metal-insulator transition, quasiparticles retain nonzero
renormalization factor and finite quasi-particle weight in the both sides of
the transition. This supports that the metal-insulator transition is caused not
by the vanishing renormalization factor but by the relative shift of the Fermi
level into the Mott gap away from the quasiparticle band, in sharp contrast
with the original dynamical mean-field theory. Charge compressibility diverges
at the critical end point of the first-order Lifshitz transition at finite
temperatures. The origin of the divergence is ascribed to singular momentum
dependence of the quasiparticle dispersion.Comment: 24 pages including 10 figure
Photometric Studies of a WZ Sge-Type Dwarf Nova Candidate, ASAS160048-4846.2
We report on our time-resolved CCD photometry during the 2005 June
superoutburst of a WZ Sge-type dwarf nova candidate, ASAS 160048-4846.2. The
ordinary superhumps underwent a complex evolution during the superoutburst. The
superhump amplitude experienced a regrowth, and had two peaks. The superhump
period decreased when the superhump amplitude reached to the first maximum,
successively gradually increased until the second maximum of the amplitude, and
finally decreased again. Investigating other SU UMa-type dwarf novae which show
an increase of the superhump period, we found the same trend of the superhump
evolution in superoutbursts of them. We speculate that the superhump regrowth
in the amplitude has a close relation to the increase of the superhump period,
and all of SU UMa-type dwarf novae with a superhump regrowth follow the same
evolution of the ordinary superhumps as that of ASAS 160048-4846.2.Comment: 7 pages, 4 figure
Superconductivity Driven by the Interband Coulomb Interaction and Implications for the Superconducting Mechanism of MgB2
Superconducting mechanism mediated by interband exchange Coulomb repulsion is
examined in an extended two-band Hubbard models with a wide band crossing the
Fermi level and coexisting with a narrower band located at moderately lower
energy. We apply newly developed path-integral renormalization group method to
reliably calculate pairing correlations. The correlation shows marked
enhancement at moderate amplitudes of the exchange Coulomb repulsion taken
smaller than the on-site repulsion for the narrower band. The pairing symmetry
is s-wave while it has unconventional phases with the opposite sign between the
order parameters on the two bands, in agreement with the mean-field prediction.
Since the band structure of recently discovered superconductor MgB shares
basic similarities with our model, we propose that the present results provide
a relevant clue for the understanding of the superconducting mechanism in
MgB as well as in this class of multi-band materials with good metallic
conduction in the normal state.Comment: 4pages, 2figure
Insulator-Metal Transition in the One and Two-Dimensional Hubbard Models
We use Quantum Monte Carlo methods to determine Green functions,
, on lattices up to for the 2D Hubbard model
at . For chemical potentials, , within the Hubbard gap, , and at {\it long} distances, , with critical behavior: , . This result stands in agreement with the
assumption of hyperscaling with correlation exponent and dynamical
exponent . In contrast, the generic band insulator as well as the
metal-insulator transition in the 1D Hubbard model are characterized by and .Comment: 9 pages (latex) and 5 postscript figures. Submitted for publication
in Phys. Rev. Let
A gapless charge mode induced by the boundary states in the half-filled Hubbard open-chain
We discuss the ground state and some excited states of the half-filled
Hubbard model defined on an open chain with L sites, where only one of the
boundary sites has a different value of chemical potential. We consider the
case when the boundary site has a negative chemical potential -p and the
Hubbard coupling U is positive. By an analytic method we show that when p is
larger than the transfer integral some of the ground-state solutions of the
Bethe ansatz equations become complex-valued. It follows that there is a
``surface phase transition'' at some critical value p_c; when p<p_c all the
charge excitations have the gap for the half-filled band, while there exists a
massless charge mode when p>p_c.Comment: Revtex, 25 pages, 3 eps figures; Full revision with Appendixes adde
Quantum Mott Transition and Multi-Furcating Criticality
Phenomenological theory of the Mott transition is presented. When the
critical temperature of the Mott transition is much higher than the quantum
degeneracy temperature, the transition is essentially described by the Ising
universality class. Below the critical temperature, phase separation or
first-order transition occurs. However, if the critical point is involved in
the Fermi degeneracy region, a marginal quantum critical point appears at zero
temperature. The originally single Mott critical point generates subsequent
many unstable fixed points through various Fermi surface instabilities induced
by the Mott criticality characterized by the diverging charge susceptibility or
doublon susceptibility. This occurs in marginal quantum-critical region.
Charge, magnetic and superconducting instabilitites compete severely under
these critical charge fluctuations. The quantum Mott transition triggers
multi-furcating criticality, which goes beyond the conventional concept of
multicriticality in quantum phase transitions. Near the quantum Mott
transition, the criticality generically drives growth of inhomogeneous
structure in the momentum space with singular points of flat dispersion on the
Fermi surface. The singular points determine the quantum dynamics of the Mott
transition by the dynamical exponent . We argue that many of
filling-control Mott transitions are classified to this category. Recent
numerical results as well as experimental results on strongly correlated
systems including transition metal oxides, organic materials and He layer
adsorbed on a substrate are consistently analyzed especially in two-dimensional
systems.Comment: 28 pages including 2 figure
Quantum Transition between an Antiferromagnetic Mott Insulator and Superconductor in Two Dimensions
We consider a Hubbard model on a square lattice with an additional
interaction, , which depends upon the square of a near-neighbor hopping. At
half-filling and a constant value of the Hubbard repulsion, increasing the
strength of the interaction drives the system from an antiferromagnetic
Mott insulator to a superconductor. This conclusion is reached
on the basis of zero temperature quantum Monte Carlo simulations on lattice
sizes up to .Comment: 4 pages (latex) and 4 postscript figure
- …
