162 research outputs found

    Interactions between the Nse3 and Nse4 Components of the SMC5-6 Complex Identify Evolutionarily Conserved Interactions between MAGE and EID Families

    Get PDF
    The SMC5-6 protein complex is involved in the cellular response to DNA damage. It is composed of 6-8 polypeptides, of which Nse1, Nse3 and Nse4 form a tight sub-complex. MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen) protein family and Nse4 is related to the EID (E1A-like inhibitor of differentiation) family of transcriptional repressors.Using site-directed mutagenesis, protein-protein interaction analyses and molecular modelling, we have identified a conserved hydrophobic surface on the C-terminal domain of Nse3 that interacts with Nse4 and identified residues in its N-terminal domain that are essential for interaction with Nse1. We show that these interactions are conserved in the human orthologs. Furthermore, interaction of MAGEG1, the mammalian ortholog of Nse3, with NSE4b, one of the mammalian orthologs of Nse4, results in transcriptional co-activation of the nuclear receptor, steroidogenic factor 1 (SF1). In an examination of the evolutionary conservation of the Nse3-Nse4 interactions, we find that several MAGE proteins can interact with at least one of the NSE4/EID proteins.We have found that, despite the evolutionary diversification of the MAGE family, the characteristic hydrophobic surface shared by all MAGE proteins from yeast to humans mediates its binding to NSE4/EID proteins. Our work provides new insights into the interactions, evolution and functions of the enigmatic MAGE proteins

    Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions

    Get PDF
    During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph

    The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils

    Get PDF
    BACKGROUND: The essential oil of chamomile, one of the oldest and agronomically most important medicinal plant species in Europe, has significant antiphlogistic, spasmolytic and antimicrobial activities. It is rich in chamazulene, a pharmaceutically active compound spontaneously formed during steam distillation from the sesquiterpene lactone matricine. Chamomile oil also contains sesquiterpene alcohols and hydrocarbons which are produced by the action of terpene synthases (TPS), the key enzymes in constructing terpene carbon skeletons. RESULTS: Here, we present the identification and characterization of five TPS enzymes contributing to terpene biosynthesis in chamomile (Matricaria recutita). Four of these enzymes were exclusively expressed in above-ground organs and produced the common terpene hydrocarbons (−)-(E)-β-caryophyllene (MrTPS1), (+)-germacrene A (MrTPS3), (E)-β-ocimene (MrTPS4) and (−)-germacrene D (MrTPS5). A fifth TPS, the multiproduct enzyme MrTPS2, was mainly expressed in roots and formed several Asteraceae-specific tricyclic sesquiterpenes with (−)-α-isocomene being the major product. The TPS transcript accumulation patterns in different organs of chamomile were consistent with the abundance of the corresponding TPS products isolated from these organs suggesting that the spatial regulation of TPS gene expression qualitatively contribute to terpene composition. CONCLUSIONS: The terpene synthases characterized in this study are involved in the organ-specific formation of essential oils in chamomile. While the products of MrTPS1, MrTPS2, MrTPS4 and MrTPS5 accumulate in the oils without further chemical alterations, (+)-germacrene A produced by MrTPS3 accumulates only in trace amounts, indicating that it is converted into another compound like matricine. Thus, MrTPS3, but also the other TPS genes, are good markers for further breeding of chamomile cultivars rich in pharmaceutically active essential oils

    Simulated eutrophication in enclosure experiments in the Arkona Sea

    Get PDF
    In spring, summer and autumn enclosure experiments were performed in the central part of the Arkona Sea. The natural water with the plankton community was enriched by nutrients to about winter levels, and to the double of these concentrations. In spring and summer, the phytoplankton responded with rapid uptake of nutrients and an increase in primary production and biomass. In autumn, the uptake of nutrients was also fast, whereas productivity did not increase, and biomass only in diatoms. Not only did the production increase with higher nutrient supply, but also the productive season was prolonged. This fact is of importance for the function of the pelagic system in the Baltic, because the biomass and nutrients remaining after the spring bloom determine to a great extent the productivity of the whole year

    The serum zinc concentration as a potential biological marker in patients with major depressive disorder

    Get PDF
    Despite many clinical trials assessing the role of zinc in major depressive disorder (MDD), the conclusions still remain ambiguous. The aim of the present clinical study was to determine and comparison the zinc concentration in the blood of MDD patients (active stage or remission) and healthy volunteers (controls), as well as to discuss its potential clinical usefulness as a biomarker of the disease. In this study 69 patients with current depressive episode, 45 patients in remission and 50 controls were enrolled. The zinc concentration was measured by electrothermal atomic absorption spectrometry (ET AAS). The obtained results revealed, that the zinc concentration in depressed phase were statistically lower than in the healthy volunteers [0.89 vs. 1.06 mg/L, respectively], while the zinc level in patients achieve remission was not significantly different from the controls [1.07 vs. 1.06 mg/L, respectively]. Additionally, among the patients achieve remission a significant differences in zinc concentration between group with and without presence of drug-resistance in the previous episode of depression were observed. Also, patients in remission demonstrated correlation between zinc level and the average number of depressive episodes in the last year. Serum zinc concentration was not dependent on atypical features of depression, presence of psychotic symptoms or melancholic syndrome, age, age of onset or duration of disease, number of episodes in the life time, duration of the episode/remission and severity of depression measured by the Hamilton Rating Scale for Depression (HDRS), and the Montgomery-Asberg Depression Rating Scale (MADRS). Concluding, our findings confirm the correlation between zinc deficit present in the depressive episode, and are consistent with the majority of previous studies. These results may also indicate that serum zinc concentration might be considered as a potential biological marker of MDD

    Specialized interfaces of Smc5/6 control hinge stability and DNA association

    Get PDF
    The Structural Maintenance of Chromosomes (SMC) complexes: cohesin, condensin and Smc5/6 are involved in the organization of higher-order chromosome structure—which is essential for accurate chromosome duplication and segregation. Each complex is scaffolded by a specific SMC protein dimer (heterodimer in eukaryotes) held together via their hinge domains. Here we show that the Smc5/6-hinge, like those of cohesin and condensin, also forms a toroidal structure but with distinctive subunit interfaces absent from the other SMC complexes; an unusual ‘molecular latch’ and a functional ‘hub’. Defined mutations in these interfaces cause severe phenotypic effects with sensitivity to DNA-damaging agents in fission yeast and reduced viability in human cells. We show that the Smc5/6-hinge complex binds preferentially to ssDNA and that this interaction is affected by both ‘latch’ and ‘hub’ mutations, suggesting a key role for these unique features in controlling DNA association by the Smc5/6 complex

    A Novel Anti-diabetic Metabolite from Plants: Biosynthesis, Gene Discovery, and Metabolic Engineering of Montbretin A

    Get PDF
    Plant specialized metabolites (i.e. secondary metabolites) have been employed by humans for centuries in traditional and modern medicine. They remain an important source for the discovery of new pharmaceuticals and nutraceuticals. Montbretin A (MbA) is a complex acylated flavonoid glycoside discovered in the below-ground storage organs (corms) of the ornamental plant montbretia (Crocosmia x crocosmiiflora). MbA a highly potent and selective inhibitor of the human pancreatic α-amylase (HPA), a key enzyme in starch degradation. MbA is being tested for the treatment of type-2 diabetes. However, due to low abundance of MbA in montbretia plants and due the complex chemical structure of MbA, natural product extraction and chemical synthesis are insufficient for MbA production. Our goal is to develop a heterologous plant production system or a microbial production system for MbA. This requires knowledge of the genes, enzymes and regulating factors of the MbA biosynthetic system in montbretia. We achieved the discovery of the complete biosynthetic pathway of MbA using an approach that combined knowledge of montbretia biology, metabolite profiling, differential transcriptome analysis, cDNA cloning, heterologous gene expression in E. coli, yeast and tobacco, and enzyme biochemistry. This includes the discovery of five new UDP-sugar dependent glycosyltransferases (UGTs) and a BAHD-acyltransferases (AT) which together catalyze the complete assembly of MbA from its different building blocks. To reconstruct MbA production in tobacco (Nicotiana benthamiana) we enhanced the biosynthesis of flavonol precursors using genes for myricetin biosynthesis and transcription factors from montbtretia, which were stacked with genes of the MbA assembly pathway. We will highlight both challenges and opportunities of exploring novel biosynthetic systems of plant specialized metabolites for the development of new drugs, and bioproducts in general

    γ-Catenin-Dependent Signals Maintain BCR-ABL1<sup>+</sup> B Cell Acute Lymphoblastic Leukemia.

    Get PDF
    The BCR-ABL1 fusion protein is the cause of chronic myeloid leukemia (CML) and of a significant fraction of adult-onset B cell acute lymphoblastic leukemia (B-ALL) cases. Using mouse models and patient-derived samples, we identified an essential role for γ-catenin in the initiation and maintenance of BCR-ABL1 &lt;sup&gt;+&lt;/sup&gt; B-ALL but not CML. The selectivity was explained by a partial γ-catenin dependence of MYC expression together with the susceptibility of B-ALL, but not CML, to reduced MYC levels. MYC and γ-catenin enabled B-ALL maintenance by augmenting BIRC5 and enforced BIRC5 expression overcame γ-catenin loss. Since γ-catenin was dispensable for normal hematopoiesis, these lineage- and disease-specific features of canonical Wnt signaling identified a potential therapeutic target for the treatment of BCR-ABL1 &lt;sup&gt;+&lt;/sup&gt; B-ALL
    corecore