2,603 research outputs found
Information-Based Physics: An Observer-Centric Foundation
It is generally believed that physical laws, reflecting an inherent order in
the universe, are ordained by nature. However, in modern physics the observer
plays a central role raising questions about how an observer-centric physics
can result in laws apparently worthy of a universal nature-centric physics.
Over the last decade, we have found that the consistent apt quantification of
algebraic and order-theoretic structures results in calculi that possess
constraint equations taking the form of what are often considered to be
physical laws. I review recent derivations of the formal relations among
relevant variables central to special relativity, probability theory and
quantum mechanics in this context by considering a problem where two observers
form consistent descriptions of and make optimal inferences about a free
particle that simply influences them. I show that this approach to describing
such a particle based only on available information leads to the mathematics of
relativistic quantum mechanics as well as a description of a free particle that
reproduces many of the basic properties of a fermion. The result is an approach
to foundational physics where laws derive from both consistent descriptions and
optimal information-based inferences made by embedded observers.Comment: To be published in Contemporary Physics. The manuscript consists of
43 pages and 9 Figure
On the and as Bound States and Approximate Nambu-Goldstone Bosons
We reconsider the two different facets of and mesons as
bound states and approximate Nambu-Goldstone bosons. We address several topics,
including masses, mass splittings between and and between and
, meson wavefunctions, charge radii, and the wavefunction overlap.Comment: 15 pages, late
Run Generation Revisited: What Goes Up May or May Not Come Down
In this paper, we revisit the classic problem of run generation. Run
generation is the first phase of external-memory sorting, where the objective
is to scan through the data, reorder elements using a small buffer of size M ,
and output runs (contiguously sorted chunks of elements) that are as long as
possible.
We develop algorithms for minimizing the total number of runs (or
equivalently, maximizing the average run length) when the runs are allowed to
be sorted or reverse sorted. We study the problem in the online setting, both
with and without resource augmentation, and in the offline setting.
(1) We analyze alternating-up-down replacement selection (runs alternate
between sorted and reverse sorted), which was studied by Knuth as far back as
1963. We show that this simple policy is asymptotically optimal. Specifically,
we show that alternating-up-down replacement selection is 2-competitive and no
deterministic online algorithm can perform better.
(2) We give online algorithms having smaller competitive ratios with resource
augmentation. Specifically, we exhibit a deterministic algorithm that, when
given a buffer of size 4M , is able to match or beat any optimal algorithm
having a buffer of size M . Furthermore, we present a randomized online
algorithm which is 7/4-competitive when given a buffer twice that of the
optimal.
(3) We demonstrate that performance can also be improved with a small amount
of foresight. We give an algorithm, which is 3/2-competitive, with
foreknowledge of the next 3M elements of the input stream. For the extreme case
where all future elements are known, we design a PTAS for computing the optimal
strategy a run generation algorithm must follow.
(4) Finally, we present algorithms tailored for nearly sorted inputs which
are guaranteed to have optimal solutions with sufficiently long runs
Pseudorandom Number Generators and the Square Site Percolation Threshold
A select collection of pseudorandom number generators is applied to a Monte
Carlo study of the two dimensional square site percolation model. A generator
suitable for high precision calculations is identified from an application
specific test of randomness. After extended computation and analysis, an
ostensibly reliable value of pc = 0.59274598(4) is obtained for the percolation
threshold.Comment: 11 pages, 6 figure
Approximating the Minimum Equivalent Digraph
The MEG (minimum equivalent graph) problem is, given a directed graph, to
find a small subset of the edges that maintains all reachability relations
between nodes. The problem is NP-hard. This paper gives an approximation
algorithm with performance guarantee of pi^2/6 ~ 1.64. The algorithm and its
analysis are based on the simple idea of contracting long cycles. (This result
is strengthened slightly in ``On strongly connected digraphs with bounded cycle
length'' (1996).) The analysis applies directly to 2-Exchange, a simple ``local
improvement'' algorithm, showing that its performance guarantee is 1.75.Comment: conference version in ACM-SIAM Symposium on Discrete Algorithms
(1994
Origin of Complex Quantum Amplitudes and Feynman's Rules
Complex numbers are an intrinsic part of the mathematical formalism of
quantum theory, and are perhaps its most mysterious feature. In this paper, we
show that the complex nature of the quantum formalism can be derived directly
from the assumption that a pair of real numbers is associated with each
sequence of measurement outcomes, with the probability of this sequence being a
real-valued function of this number pair. By making use of elementary symmetry
conditions, and without assuming that these real number pairs have any other
algebraic structure, we show that these pairs must be manipulated according to
the rules of complex arithmetic. We demonstrate that these complex numbers
combine according to Feynman's sum and product rules, with the modulus-squared
yielding the probability of a sequence of outcomes.Comment: v2: Clarifications, and minor corrections and modifications. Results
unchanged. v3: Minor changes to introduction and conclusio
A parallel algorithm for the enumeration of benzenoid hydrocarbons
We present an improved parallel algorithm for the enumeration of fixed
benzenoids B_h containing h hexagonal cells. We can thus extend the enumeration
of B_h from the previous best h=35 up to h=50. Analysis of the associated
generating function confirms to a very high degree of certainty that and we estimate that the growth constant and the amplitude .Comment: 14 pages, 6 figure
Knuthian Drawings of Series-Parallel Flowcharts
Inspired by a classic paper by Knuth, we revisit the problem of drawing
flowcharts of loop-free algorithms, that is, degree-three series-parallel
digraphs. Our drawing algorithms show that it is possible to produce Knuthian
drawings of degree-three series-parallel digraphs with good aspect ratios and
small numbers of edge bends.Comment: Full versio
Log-Poisson Cascade Description of Turbulent Velocity Gradient Statistics
The Log-Poisson phenomenological description of the turbulent energy cascade
is evoked to discuss high-order statistics of velocity derivatives and the
mapping between their probability distribution functions at different Reynolds
numbers. The striking confirmation of theoretical predictions suggests that
numerical solutions of the flow, obtained at low/moderate Reynolds numbers can
play an important quantitative role in the analysis of experimental high
Reynolds number phenomena, where small scales fluctuations are in general
inaccessible from direct numerical simulations
- …
