2,603 research outputs found

    Information-Based Physics: An Observer-Centric Foundation

    Full text link
    It is generally believed that physical laws, reflecting an inherent order in the universe, are ordained by nature. However, in modern physics the observer plays a central role raising questions about how an observer-centric physics can result in laws apparently worthy of a universal nature-centric physics. Over the last decade, we have found that the consistent apt quantification of algebraic and order-theoretic structures results in calculi that possess constraint equations taking the form of what are often considered to be physical laws. I review recent derivations of the formal relations among relevant variables central to special relativity, probability theory and quantum mechanics in this context by considering a problem where two observers form consistent descriptions of and make optimal inferences about a free particle that simply influences them. I show that this approach to describing such a particle based only on available information leads to the mathematics of relativistic quantum mechanics as well as a description of a free particle that reproduces many of the basic properties of a fermion. The result is an approach to foundational physics where laws derive from both consistent descriptions and optimal information-based inferences made by embedded observers.Comment: To be published in Contemporary Physics. The manuscript consists of 43 pages and 9 Figure

    On the π\pi and KK as qqˉq \bar q Bound States and Approximate Nambu-Goldstone Bosons

    Full text link
    We reconsider the two different facets of π\pi and KK mesons as qqˉq \bar q bound states and approximate Nambu-Goldstone bosons. We address several topics, including masses, mass splittings between π\pi and ρ\rho and between KK and KK^*, meson wavefunctions, charge radii, and the KπK-\pi wavefunction overlap.Comment: 15 pages, late

    Run Generation Revisited: What Goes Up May or May Not Come Down

    Full text link
    In this paper, we revisit the classic problem of run generation. Run generation is the first phase of external-memory sorting, where the objective is to scan through the data, reorder elements using a small buffer of size M , and output runs (contiguously sorted chunks of elements) that are as long as possible. We develop algorithms for minimizing the total number of runs (or equivalently, maximizing the average run length) when the runs are allowed to be sorted or reverse sorted. We study the problem in the online setting, both with and without resource augmentation, and in the offline setting. (1) We analyze alternating-up-down replacement selection (runs alternate between sorted and reverse sorted), which was studied by Knuth as far back as 1963. We show that this simple policy is asymptotically optimal. Specifically, we show that alternating-up-down replacement selection is 2-competitive and no deterministic online algorithm can perform better. (2) We give online algorithms having smaller competitive ratios with resource augmentation. Specifically, we exhibit a deterministic algorithm that, when given a buffer of size 4M , is able to match or beat any optimal algorithm having a buffer of size M . Furthermore, we present a randomized online algorithm which is 7/4-competitive when given a buffer twice that of the optimal. (3) We demonstrate that performance can also be improved with a small amount of foresight. We give an algorithm, which is 3/2-competitive, with foreknowledge of the next 3M elements of the input stream. For the extreme case where all future elements are known, we design a PTAS for computing the optimal strategy a run generation algorithm must follow. (4) Finally, we present algorithms tailored for nearly sorted inputs which are guaranteed to have optimal solutions with sufficiently long runs

    Pseudorandom Number Generators and the Square Site Percolation Threshold

    Full text link
    A select collection of pseudorandom number generators is applied to a Monte Carlo study of the two dimensional square site percolation model. A generator suitable for high precision calculations is identified from an application specific test of randomness. After extended computation and analysis, an ostensibly reliable value of pc = 0.59274598(4) is obtained for the percolation threshold.Comment: 11 pages, 6 figure

    Approximating the Minimum Equivalent Digraph

    Full text link
    The MEG (minimum equivalent graph) problem is, given a directed graph, to find a small subset of the edges that maintains all reachability relations between nodes. The problem is NP-hard. This paper gives an approximation algorithm with performance guarantee of pi^2/6 ~ 1.64. The algorithm and its analysis are based on the simple idea of contracting long cycles. (This result is strengthened slightly in ``On strongly connected digraphs with bounded cycle length'' (1996).) The analysis applies directly to 2-Exchange, a simple ``local improvement'' algorithm, showing that its performance guarantee is 1.75.Comment: conference version in ACM-SIAM Symposium on Discrete Algorithms (1994

    Origin of Complex Quantum Amplitudes and Feynman's Rules

    Full text link
    Complex numbers are an intrinsic part of the mathematical formalism of quantum theory, and are perhaps its most mysterious feature. In this paper, we show that the complex nature of the quantum formalism can be derived directly from the assumption that a pair of real numbers is associated with each sequence of measurement outcomes, with the probability of this sequence being a real-valued function of this number pair. By making use of elementary symmetry conditions, and without assuming that these real number pairs have any other algebraic structure, we show that these pairs must be manipulated according to the rules of complex arithmetic. We demonstrate that these complex numbers combine according to Feynman's sum and product rules, with the modulus-squared yielding the probability of a sequence of outcomes.Comment: v2: Clarifications, and minor corrections and modifications. Results unchanged. v3: Minor changes to introduction and conclusio

    A parallel algorithm for the enumeration of benzenoid hydrocarbons

    Full text link
    We present an improved parallel algorithm for the enumeration of fixed benzenoids B_h containing h hexagonal cells. We can thus extend the enumeration of B_h from the previous best h=35 up to h=50. Analysis of the associated generating function confirms to a very high degree of certainty that BhAκh/hB_h \sim A \kappa^h /h and we estimate that the growth constant κ=5.161930154(8)\kappa = 5.161930154(8) and the amplitude A=0.2808499(1)A=0.2808499(1).Comment: 14 pages, 6 figure

    Knuthian Drawings of Series-Parallel Flowcharts

    Full text link
    Inspired by a classic paper by Knuth, we revisit the problem of drawing flowcharts of loop-free algorithms, that is, degree-three series-parallel digraphs. Our drawing algorithms show that it is possible to produce Knuthian drawings of degree-three series-parallel digraphs with good aspect ratios and small numbers of edge bends.Comment: Full versio

    Log-Poisson Cascade Description of Turbulent Velocity Gradient Statistics

    Full text link
    The Log-Poisson phenomenological description of the turbulent energy cascade is evoked to discuss high-order statistics of velocity derivatives and the mapping between their probability distribution functions at different Reynolds numbers. The striking confirmation of theoretical predictions suggests that numerical solutions of the flow, obtained at low/moderate Reynolds numbers can play an important quantitative role in the analysis of experimental high Reynolds number phenomena, where small scales fluctuations are in general inaccessible from direct numerical simulations
    corecore