2,489 research outputs found
Interior regularity criteria for suitable weak solutions of the Navier-Stokes equations
We present new interior regularity criteria for suitable weak solutions of
the 3-D Navier-Stokes equations: a suitable weak solution is regular near an
interior point if either the scaled -norm of the velocity
with , , or the -norm of the
vorticity with , , or the
-norm of the gradient of the vorticity with , , , is sufficiently small near
Tubular structures of GaS
In this Brief Report we demonstrate, using density-functional tight-binding theory, that gallium sulfide (GaS) tubular nanostructures are stable and energetically viable. The GaS-based nanotubes have a semiconducting direct gap which grows towards the value of two-dimensional hexagonal GaS sheet and is in contrast to carbon nanotubes largely independent of chirality. We further report on the mechanical properties of the GaS-based nanotubes
Acquired resistance of human T cells to sulfasalazine: stability of the resistant phenotype and sensitivity to non-related DMARDs.
2.5 weeks) resumption of SSZ resistance and ABCG2 expression as in the original CEM/SSZ cells. CEM/SSZ cells displayed diminished sensitivity to the DMARDs leflunomide (5.1-fold) and methotrexate (1.8-fold), were moderately more sensitive (1.6-2.0 fold) to cyclosporin A and chloroquine, and markedly more sensitive (13-fold) to the glucocorticoid dexamethasone as compared with parental CEM cells. CONCLUSION: The drug efflux pump ABCG2 has a major role in conferring resistance to SSZ. The collateral sensitivity of SSZ resistant cells for some other (non-related) DMARDs may provide a further rationale for sequential mono- or combination therapies with distinct DMARDs upon decreased efficacy of SSZ
A Cognitive Model of an Epistemic Community: Mapping the Dynamics of Shallow Lake Ecosystems
We used fuzzy cognitive mapping (FCM) to develop a generic shallow lake
ecosystem model by augmenting the individual cognitive maps drawn by 8
scientists working in the area of shallow lake ecology. We calculated graph
theoretical indices of the individual cognitive maps and the collective
cognitive map produced by augmentation. The graph theoretical indices revealed
internal cycles showing non-linear dynamics in the shallow lake ecosystem. The
ecological processes were organized democratically without a top-down
hierarchical structure. The steady state condition of the generic model was a
characteristic turbid shallow lake ecosystem since there were no dynamic
environmental changes that could cause shifts between a turbid and a clearwater
state, and the generic model indicated that only a dynamic disturbance regime
could maintain the clearwater state. The model developed herein captured the
empirical behavior of shallow lakes, and contained the basic model of the
Alternative Stable States Theory. In addition, our model expanded the basic
model by quantifying the relative effects of connections and by extending it.
In our expanded model we ran 4 simulations: harvesting submerged plants,
nutrient reduction, fish removal without nutrient reduction, and
biomanipulation. Only biomanipulation, which included fish removal and nutrient
reduction, had the potential to shift the turbid state into clearwater state.
The structure and relationships in the generic model as well as the outcomes of
the management simulations were supported by actual field studies in shallow
lake ecosystems. Thus, fuzzy cognitive mapping methodology enabled us to
understand the complex structure of shallow lake ecosystems as a whole and
obtain a valid generic model based on tacit knowledge of experts in the field.Comment: 24 pages, 5 Figure
From Social Data Mining to Forecasting Socio-Economic Crisis
Socio-economic data mining has a great potential in terms of gaining a better
understanding of problems that our economy and society are facing, such as
financial instability, shortages of resources, or conflicts. Without
large-scale data mining, progress in these areas seems hard or impossible.
Therefore, a suitable, distributed data mining infrastructure and research
centers should be built in Europe. It also appears appropriate to build a
network of Crisis Observatories. They can be imagined as laboratories devoted
to the gathering and processing of enormous volumes of data on both natural
systems such as the Earth and its ecosystem, as well as on human
techno-socio-economic systems, so as to gain early warnings of impending
events. Reality mining provides the chance to adapt more quickly and more
accurately to changing situations. Further opportunities arise by individually
customized services, which however should be provided in a privacy-respecting
way. This requires the development of novel ICT (such as a self- organizing
Web), but most likely new legal regulations and suitable institutions as well.
As long as such regulations are lacking on a world-wide scale, it is in the
public interest that scientists explore what can be done with the huge data
available. Big data do have the potential to change or even threaten democratic
societies. The same applies to sudden and large-scale failures of ICT systems.
Therefore, dealing with data must be done with a large degree of responsibility
and care. Self-interests of individuals, companies or institutions have limits,
where the public interest is affected, and public interest is not a sufficient
justification to violate human rights of individuals. Privacy is a high good,
as confidentiality is, and damaging it would have serious side effects for
society.Comment: 65 pages, 1 figure, Visioneer White Paper, see
http://www.visioneer.ethz.c
Dragon-kings: mechanisms, statistical methods and empirical evidence
This introductory article presents the special Discussion and Debate volume
"From black swans to dragon-kings, is there life beyond power laws?" published
in Eur. Phys. J. Special Topics in May 2012. We summarize and put in
perspective the contributions into three main themes: (i) mechanisms for
dragon-kings, (ii) detection of dragon-kings and statistical tests and (iii)
empirical evidence in a large variety of natural and social systems. Overall,
we are pleased to witness significant advances both in the introduction and
clarification of underlying mechanisms and in the development of novel
efficient tests that demonstrate clear evidence for the presence of
dragon-kings in many systems. However, this positive view should be balanced by
the fact that this remains a very delicate and difficult field, if only due to
the scarcity of data as well as the extraordinary important implications with
respect to hazard assessment, risk control and predictability.Comment: 20 page
Modeling resilience and sustainability in ancient agricultural systems
The reasons why people adopt unsustainable agricultural practices, and the ultimate environmental implications of those practices, remain incompletely understood in the present world. Archaeology, however, offers unique datasets on coincident cultural and ecological change, and their social and environmental effects. This article applies concepts derived from ecological resilience thinking to assess the sustainability of agricultural practices as a result of long-term interactions between political, economic, and environmental systems. Using the urban center of Gordion, in central Turkey, as a case study, it is possible to identify mismatched social and ecological processes on temporal, spatial, and organizational scales, which help to resolve thresholds of resilience. Results of this analysis implicate temporal and spatial mismatches as a cause for local environmental degradation, and increasing extralocal economic pressures as an ultimate cause for the adoption of unsustainable land-use practices. This analysis suggests that a research approach that integrates environmental archaeology with a resilience perspective has considerable potential for explicating regional patterns of agricultural change and environmental degradation in the past
The Pioneer anomaly in the context of the braneworld scenario
We examine the Pioneer anomaly - a reported anomalous acceleration affecting
the Pioneer 10/11, Galileo and Ulysses spacecrafts - in the context of a
braneworld scenario. We show that effects due to the radion field cannot
account for the anomaly, but that a scalar field with an appropriate potential
is able to explain the phenomena. Implications and features of our solution are
analyzed.Comment: Final version to appear at Classical & Quantum Gravity. Plainlatex 19
page
Multi-Particle Collision Dynamics -- a Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids
In this review, we describe and analyze a mesoscale simulation method for
fluid flow, which was introduced by Malevanets and Kapral in 1999, and is now
called multi-particle collision dynamics (MPC) or stochastic rotation dynamics
(SRD). The method consists of alternating streaming and collision steps in an
ensemble of point particles. The multi-particle collisions are performed by
grouping particles in collision cells, and mass, momentum, and energy are
locally conserved. This simulation technique captures both full hydrodynamic
interactions and thermal fluctuations. The first part of the review begins with
a description of several widely used MPC algorithms and then discusses
important features of the original SRD algorithm and frequently used
variations. Two complementary approaches for deriving the hydrodynamic
equations and evaluating the transport coefficients are reviewed. It is then
shown how MPC algorithms can be generalized to model non-ideal fluids, and
binary mixtures with a consolute point. The importance of angular-momentum
conservation for systems like phase-separated liquids with different
viscosities is discussed. The second part of the review describes a number of
recent applications of MPC algorithms to study colloid and polymer dynamics,
the behavior of vesicles and cells in hydrodynamic flows, and the dynamics of
viscoelastic fluids
Genome-wide association analysis on normal hearing function identifies PCDH20 and SLC28A3 as candidates for hearing function and loss
Hearing loss and individual differences in normal hearing both have a substantial genetic basis. Although many new genes contributing to deafness have been identified, very little is known about genes/variants modulating the normal range of hearing ability. To fill this gap, we performed a two-stage meta-analysis on hearing thresholds (tested at 0.25, 0.5, 1, 2, 4, 8 kHz) and on pure-tone averages (low-, medium- and high-frequency thresholds grouped) in several isolated populations from Italy and Central Asia (total N = 2636). Here, we detected two genome-wide significant loci close to PCDH20 and SLC28A3 (top hits: rs78043697, P = 4.71E-10 and rs7032430, P = 2.39E-09, respectively). For both loci, we sought replication in two independent cohorts: B58C from the UK (N = 5892) and FITSA from Finland (N = 270). Both loci were successfully replicated at a nominal level of significance (P < 0.05). In order to confirm our quantitative findings, we carried out RT-PCR and reported RNA-Seq data, which showed that both genes are expressed in mouse inner ear, especially in hair cells, further suggesting them as good candidates for modulatory genes in the auditory system. Sequencing data revealed no functional variants in the coding region of PCDH20 or SLC28A3, suggesting that variation in regulatory sequences may affect expression. Overall, these results contribute to a better understanding of the complex mechanisms underlying human hearing function
- …
