35 research outputs found
Homeostasis Meets Motivation in the Battle to Control Food Intake.
Signals of energy homeostasis interact closely with neural circuits of motivation to control food intake. An emerging hypothesis is that the transition to maladaptive feeding behavior seen in eating disorders or obesity may arise from dysregulation of these interactions. Focusing on key brain regions involved in the control of food intake (ventral tegmental area, striatum, hypothalamus, and thalamus), we describe how activity of specific cell types embedded within these regions can influence distinct components of motivated feeding behavior. We review how signals of energy homeostasis interact with these regions to influence motivated behavioral output and present evidence that experience-dependent neural adaptations in key feeding circuits may represent cellular correlates of impaired food intake control. Future research into mechanisms that restore the balance of control between signals of homeostasis and motivated feeding behavior may inspire new treatment options for eating disorders and obesity
Glucose transporter 2 mediates the hypoglycemia-induced increase in cerebral blood flow.
Glucose transporter 2 (Glut2)-positive cells are sparsely distributed in brain and play an important role in the stimulation of glucagon secretion in response to hypoglycemia. We aimed to determine if Glut2-positive cells can influence another response to hypoglycemia, i.e. increased cerebral blood flow (CBF). CBF of adult male mice devoid of Glut2, either globally (ripglut1:glut2 <sup>-</sup> <sup>/</sup> <sup>-</sup> ) or in the nervous system only (NG2KO), and their respective controls were studied under basal glycemia and insulin-induced hypoglycemia using quantitative perfusion magnetic resonance imaging at 9.4 T. The effect on CBF of optogenetic activation of hypoglycemia responsive Glut2-positive neurons of the paraventricular thalamic area was measured in mice expressing channelrhodopsin2 under the control of the Glut2 promoter. We found that in both ripglut1:glut2 <sup>-</sup> <sup>/</sup> <sup>-</sup> mice and NG2KO mice, CBF in basal conditions was higher than in their respective controls and not further activated by hypoglycemia, as measured in the hippocampus, hypothalamus and whole brain. Conversely, optogenetic activation of Glut2-positive cells in the paraventricular thalamic nucleus induced a local increase in CBF similar to that induced by hypoglycemia. Thus, Glut2 expression in the nervous system is required for the control of CBF in response to changes in blood glucose concentrations
Microglial lipid phosphatase SHIP1 limits complement-mediated synaptic pruning in the healthy developing hippocampus
The gene inositol polyphosphate-5-phosphatase D (INPP5D), which encodes the lipid phosphatase SH2-containing inositol polyphosphate 5-phosphatase 1 (SHIP1), is associated with the risk of Alzheimer's disease (AD). How it influences microglial function and brain physiology is unclear. Here, we showed that SHIP1 was enriched in early stages of healthy brain development. By combining in vivo loss-of-function approaches and proteomics, we discovered that mice conditionally lacking microglial SHIP1 displayed increased complement and synapse loss in the early postnatal brain. SHIP1-deficient microglia showed altered transcriptional signatures and abnormal synaptic pruning that was dependent on the complement system. Mice exhibited cognitive defects in adulthood only when microglial SHIP1 was depleted early postnatally but not at later stages. Induced pluripotent stem cell (iPSC)-derived microglia lacking SHIP1 also showed increased engulfment of synaptic structures. These findings suggest that SHIP1 is essential for proper microglia-mediated synapse remodeling in the healthy developing brain. Disrupting this process has lasting behavioral effects and may be linked to vulnerability to neurodegeneration.</p
Microglial lipid phosphatase SHIP1 limits complement-mediated synaptic pruning in the healthy developing hippocampus
The gene inositol polyphosphate-5-phosphatase D (INPP5D), which encodes the lipid phosphatase SH2-containing inositol polyphosphate 5-phosphatase 1 (SHIP1), is associated with the risk of Alzheimer's disease (AD). How it influences microglial function and brain physiology is unclear. Here, we showed that SHIP1 was enriched in early stages of healthy brain development. By combining in vivo loss-of-function approaches and proteomics, we discovered that mice conditionally lacking microglial SHIP1 displayed increased complement and synapse loss in the early postnatal brain. SHIP1-deficient microglia showed altered transcriptional signatures and abnormal synaptic pruning that was dependent on the complement system. Mice exhibited cognitive defects in adulthood only when microglial SHIP1 was depleted early postnatally but not at later stages. Induced pluripotent stem cell (iPSC)-derived microglia lacking SHIP1 also showed increased engulfment of synaptic structures. These findings suggest that SHIP1 is essential for proper microglia-mediated synapse remodeling in the healthy developing brain. Disrupting this process has lasting behavioral effects and may be linked to vulnerability to neurodegeneration
Age-dependent effects of protein restriction on dopamine release
FUNDING AND DISCLOSURE This work was supported by the Biotechnology and Biological Sciences Research Council [grant # BB/M007391/1 to J.E.M.], the European Commission [grant # GA 631404 to J.E.M.], The Leverhulme Trust [grant # RPG-2017-417 to J.E.M.] and the Tromsø Research Foundation [grant # 19-SG-JMcC to J. E. M.). The authors declare no conflict of interest. ACKNOWLEDGEMENTS The authors would like to acknowledge the help and support from the staff of the Division of Biomedical Services, Preclinical Research Facility, University of Leicester, for technical support and the care of experimental animals.Peer reviewedPublisher PD
Brain glucose sensing in homeostatic and hedonic regulation.
Glucose homeostasis as well as homeostatic and hedonic control of feeding is regulated by hormonal, neuronal, and nutrient-related cues. Glucose, besides its role as a source of metabolic energy, is an important signal controlling hormone secretion and neuronal activity, hence contributing to whole-body metabolic integration in coordination with feeding control. Brain glucose sensing plays a key, but insufficiently explored, role in these metabolic and behavioral controls, which when deregulated may contribute to the development of obesity and diabetes. The recent introduction of innovative transgenic, pharmacogenetic, and optogenetic techniques allows unprecedented analysis of the complexity of central glucose sensing at the molecular, cellular, and neuronal circuit levels, which will lead to a new understanding of the pathogenesis of metabolic diseases
GLUT2-Expressing Neurons as Glucose Sensors in the Brain: Electrophysiological Analysis.
Brain glucose sensing plays an essential role in the regulation of energy homeostasis. Recent publications report that neurons expressing glucose transporter GLUT2 act as glucose sensors in different regions of the brain and contribute to the control of glucose homeostasis and feeding behavior. In this chapter we describe the methods used to explore glucose sensing in genetically tagged GLUT2-expressing neurons with slice electrophysiology
EphrinB1 modulates glutamatergic inputs into POMC-expressing progenitors and controls glucose homeostasis.
Proopiomelanocortin (POMC) neurons are major regulators of energy balance and glucose homeostasis. In addition to being regulated by hormones and nutrients, POMC neurons are controlled by glutamatergic input originating from multiple brain regions. However, the factors involved in the formation of glutamatergic inputs and how they contribute to bodily functions remain largely unknown. Here, we show that during the development of glutamatergic inputs, POMC neurons exhibit enriched expression of the Efnb1 (EphrinB1) and Efnb2 (EphrinB2) genes, which are known to control excitatory synapse formation. In vivo loss of Efnb1 in POMC-expressing progenitors decreases the amount of glutamatergic inputs, associated with a reduced number of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor subunits and excitability of these cells. We found that mice lacking Efnb1 in POMC-expressing progenitors display impaired glucose tolerance due to blunted vagus nerve activity and decreased insulin secretion. However, despite reduced excitatory inputs, mice lacking Efnb2 in POMC-expressing progenitors showed no deregulation of insulin secretion and only mild alterations in feeding behavior and gluconeogenesis. Collectively, our data demonstrate the role of ephrins in controlling excitatory input amount into POMC-expressing progenitors and show an isotype-specific role of ephrins on the regulation of glucose homeostasis and feeding
Glucokinase neurons of the paraventricular nucleus of the thalamus sense glucose and decrease food consumption.
The paraventricular nucleus of the thalamus (PVT) controls goal-oriented behavior through its connections to the nucleus accumbens (NAc). We previously characterized Glut2 <sup>aPVT</sup> neurons that are activated by hypoglycemia, and which increase sucrose seeking behavior through their glutamatergic projections to the NAc. Here, we identified glucokinase (Gck)-expressing neurons of the PVT (Gck <sup>aPVT</sup> ) and generated a mouse line expressing the Cre recombinase from the glucokinase locus (Gck <sup>Cre/+</sup> mice). Ex vivo calcium imaging and whole-cell patch clamp recordings revealed that Gck <sup>aPVT</sup> neurons that project to the NAc were mostly activated by hyperglycemia. Their chemogenetic inhibition or optogenetic stimulation, respectively, enhanced food intake or decreased sucrose-seeking behavior. Collectively, our results describe a neuronal population of Gck-expressing neurons in the PVT, which has opposite glucose sensing properties and control over feeding behavior than the previously characterized Glut2 <sup>aPVT</sup> neurons. This study allows a better understanding of the complex regulation of feeding behavior by the PVT
Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids.
The prevalence of obesity has markedly increased over the past few decades. Exploration of how hunger and satiety signals influence the reward system can help us understand non-homeostatic feeding. Insulin may act in the ventral tegmental area (VTA), a critical site for reward-seeking behavior, to suppress feeding. However, the neural mechanisms underlying insulin effects in the VTA remain unknown. We demonstrate that insulin, a circulating catabolic peptide that inhibits feeding, can induce long-term depression (LTD) of mouse excitatory synapses onto VTA dopamine neurons. This effect requires endocannabinoid-mediated presynaptic inhibition of glutamate release. Furthermore, after a sweetened high-fat meal, which elevates endogenous insulin, insulin-induced LTD is occluded. Finally, insulin in the VTA reduces food anticipatory behavior in mice and conditioned place preference for food in rats. Taken together, these results suggest that insulin in the VTA suppresses excitatory synaptic transmission and reduces anticipatory activity and preference for food-related cues
