6,175 research outputs found
Distributed localization of a RF target in NLOS environments
We propose a novel distributed expectation maximization (EM) method for
non-cooperative RF device localization using a wireless sensor network. We
consider the scenario where few or no sensors receive line-of-sight signals
from the target. In the case of non-line-of-sight signals, the signal path
consists of a single reflection between the transmitter and receiver. Each
sensor is able to measure the time difference of arrival of the target's signal
with respect to a reference sensor, as well as the angle of arrival of the
target's signal. We derive a distributed EM algorithm where each node makes use
of its local information to compute summary statistics, and then shares these
statistics with its neighbors to improve its estimate of the target
localization. Since all the measurements need not be centralized at a single
location, the spectrum usage can be significantly reduced. The distributed
algorithm also allows for increased robustness of the sensor network in the
case of node failures. We show that our distributed algorithm converges, and
simulation results suggest that our method achieves an accuracy close to the
centralized EM algorithm. We apply the distributed EM algorithm to a set of
experimental measurements with a network of four nodes, which confirm that the
algorithm is able to localize a RF target in a realistic non-line-of-sight
scenario.Comment: 30 pages, 11 figure
Electric‐field dependence of interband transitions in In_(0.53)Ga_(0.47)As/In_(0.52)Al_(0.48)As single quantum wells by room‐temperature electrotransmittance
Room‐temperature electrotransmittance has been used in order to investigate the interband excitonic transitions in a 250‐Å‐thick In_(0.53)Ga_(0.47)As/In_(0.52)Al_(0.48)As single‐quantum‐well system as a function of an externally applied electric field. Parity forbidden transitions, involving conduction‐band states with quantum numbers up to n=5, which become more pronounced at high electric fields were observed. The ground‐state and the forbidden transitions showed a significant red shift due to the quantum confined Stark effect. A comparison with previously reported results on thinner InGaAs/InAlAs quantum wells indicated that the wide‐well sample exhibits the largest shift, as expected from theory. Despite the appreciable Stark shift, the rather large, field‐induced linewidth broadening and the relatively low electric field at which the ground‐state exciton is ionized poses limitations on using this wide‐quantum‐well system for electro‐optic applications
Observation of Droplet Size Oscillations in a Two-Phase Fluid under Shear Flow
Experimental observations of droplet size sustained oscillations are reported
in a two-phase flow between a lamellar and a sponge phase. Under shear flow,
this system presents two different steady states made of monodisperse
multilamellar droplets, separated by a shear-thinning transition. At low and
high shear rates, the droplet size results from a balance between surface
tension and viscous stress whereas for intermediate shear rates, it becomes a
periodic function of time. A possible mechanism for such kind of oscillations
is discussed
Micro-evaporators for kinetic exploration of phase diagrams
We use pervaporation-based microfluidic devices to concentrate species in
aqueous solutions with spatial and temporal control of the process. Using
experiments and modelling, we quantitatively describe the advection-diffusion
behavior of the concentration field of various solutions (electrolytes,
colloids, etc) and demonstrate the potential of these devices as universal
tools for the kinetic exploration of the phases and textures that form upon
concentration
Risks associated with endotoxins in feed additives produced by fermentation
Acknowledgements We thank Jordi Tarrés Call, who recorded the discussions and offered advice about procedures, and Nicole Reisinger and Gerd Schatzmayr, who provided valuable information about endotoxins in animal feeds. The Rowett Institute of Nutrition and Health is funded by the Rural and Environment Science and Analytical Services Division (RESAS) of the Scottish Government.Peer reviewedPublisher PD
Patient and Public Involvement in the Development of Healthcare Guidance: An Overview of Current Methods and Future Challenges
Clinical guidelines and health technology assessments are valuable instruments to improve the quality of healthcare delivery and aim to integrate the best available evidence with real-world, expert context. The role of patient and public involvement in their development has grown in recent decades, and this article considers the international literature exploring aspects of this participation, including the integration of experiential and scientific knowledge, recruitment strategies, models of involvement, stages of involvement, and methods of evaluation. These developments have been underpinned by the parallel rise of public involvement and evidence-based medicine as important concepts in health policy. Improving the recruitment of guideline group chairs, widening evidence reviews to include patient preference studies, adapting guidance presentation to highlight patient preference points and providing clearer instructions on how patient organisations can submit their intelligence are emerging proposals that may further enhance patient and public involvement in their processes
Joint Deployment and Mobility Management of Energy Harvesting Small Cells in Heterogeneous Networks
Small heterogeneous cells have been introduced to improve the system capacity and provide the ubiquitous service requirements. In order to make flexible deployment and management of massive small cells, the utilization of self-powered small cell base stations with energy harvesting (EH-SCBSs) is becoming a promising solution due to low-cost expenditure. However, the deployment of static EH-SCBSs entails several intractable challenges in terms of the randomness of renewable energy arrival and dynamics of traffic load with spatio-temporal fluctuation. To tackle these challenges, we develop a tractable framework of the location deployment and mobility management of EH-SCBSs with various traffic load distributions an environmental energy models. In this paper, the joint optimization problem for location deployment and mobile management is investigated for maximizing the total system utility of both users and network operators. Since the formulated problem is a NP-hard problem, we propose a low-complex algorithm that decouples the joint optimization into the location updating approach and the association matching approach. A suboptimal solution for the optimization problem can be guaranteed using the iteration of two stage approaches. Performance evaluation shows that the proposed schemes can efficiently solve the target problems while striking a better overall system utility, compared with other traditional deployment and management strategies
Elastic instability in stratified core annular flow
We study experimentally the interfacial instability between a layer of dilute
polymer solution and water flowing in a thin capillary. The use of microfluidic
devices allows us to observe and quantify in great detail the features of the
flow. At low velocities, the flow takes the form of a straight jet, while at
high velocities, steady or advected wavy jets are produced. We demonstrate that
the transition between these flow regimes is purely elastic -- it is caused by
viscoelasticity of the polymer solution only. The linear stability analysis of
the flow in the short-wave approximation captures quantitatively the flow
diagram. Surprisingly, unstable flows are observed for strong velocities,
whereas convected flows are observed for low velocities. We demonstrate that
this instability can be used to measure rheological properties of dilute
polymer solutions that are difficult to assess otherwise.Comment: 4 pages, 4 figure
Orthogonal polynomials of discrete variable and Lie algebras of complex size matrices
We give a uniform interpretation of the classical continuous Chebyshev's and
Hahn's orthogonal polynomials of discrete variable in terms of Feigin's Lie
algebra gl(N), where N is any complex number. One can similarly interpret
Chebyshev's and Hahn's q-polynomials and introduce orthogonal polynomials
corresponding to Lie superlagebras.
We also describe the real forms of gl(N), quasi-finite modules over gl(N),
and conditions for unitarity of the quasi-finite modules. Analogs of tensors
over gl(N) are also introduced.Comment: 25 pages, LaTe
- …
