8,833 research outputs found
THE EFFECT OF RURAL ZONING ON THE ALLOCATION OF LAND USE IN OHIO
By incorporating the spatially arrangement of counties relative to each other, this paper uses a land use share model to investigate the possibility that the allocation of land use in one county could be influenced by not only the degree to which the county is zoned, but also the degree to which neighboring counties are zoned due to spillovers of zoning effects among neighboring counties. The estimation uses data on land use for 88 counties in Ohio.Land Economics/Use,
Recommended from our members
Immune interferon inhibits proliferation and induces 2'-5'-oligoadenylate synthetase gene expression in human vascular smooth muscle cells.
Proliferation of vascular smooth muscle cells (SMC) contributes to formation of the complicated human atherosclerotic plaque. These lesions also contain macrophages, known to secrete SMC mitogens, and T lymphocytes. Many of the SMC in the lesions express class II major histocompatibility antigens, an indication that activated T cells secrete immune IFN-gamma locally in the plaque. We therefore studied the effect of IFN-gamma on the proliferation of cultured SMC derived from adult human blood vessels. IFN-gamma (1,000 U/ml) reduced [3H]thymidine (TdR) incorporation into DNA by SMC stimulated with the well-defined mitogens IL 1 (from 15.3 +/- 0.7 to 6.2 +/- 0.7 dpm X 10(-3)/24 h) or platelet-derived growth factor (PDGF) (from 18.5 +/- 1.0 to 7.3 +/- 0.7 dpm X 10(-3)/24 h). Kinetic and nuclear labeling studies indicated that this effect of IFN-gamma was not due to altered thymidine transport or specific radioactivity of TdR in the cell. In longer term experiments (4-16 d) IFN-gamma prevented net DNA accumulation by SMC cultures stimulated by PDGF. IFN-gamma also delayed (from 30 to 60 min) the time to peak level of c-fos RNA in IL 1-treated SMC. It is unlikely that cytotoxicity caused these effects of IFN-gamma, as the inhibition of growth was reversible and we detected no cell death in SMC cultures exposed to this cytokine. Activation of 2'-5' oligoadenylate synthetase gene expression may mediate certain antiproliferative and antiviral effects of interferons. Both IFN-gamma and type I IFNs (IFN-alpha or IFN-beta) induced 2'-5' oligoadenylate synthetase mRNA and enzyme activity in SMC cultures, but with concentration dependence and time course that may not account for all of IFN-gamma's cytostatic effect on SMC. The accumulation of SMC in human atherosclerotic lesions is a long-term process that must involve altered balance between growth stimulatory and inhibitory factors. The cytostatic effect of IFN-gamma on human SMC demonstrated here may influence this balance during human atherogenesis, because T cells present in the complicated atherosclerotic plaque likely produce this cytokine
Recommended from our members
Interleukin 1: a mitogen for human vascular smooth muscle cells that induces the release of growth-inhibitory prostanoids.
There is much interest in defining the signals that initiate abnormal proliferation of cells in a variety of states characterized by the presence of mononuclear phagocytes. Since IL-1 is a major secretory product of activated human monocytes we examined whether this cytokine can stimulate the growth of human vascular smooth muscle cells (SMC). Neither recombinant IL-1 (rIL-1) alpha (less than or equal to 5.0 ng/ml) nor beta (less than or equal to 100 ng/ml) stimulated SMC growth during 2-d incubations under usual conditions. IL-1 did stimulate SMC to produce prostanoids such as PGE1 or PGE2 that can inhibit SMC proliferation. When prostaglandin synthesis was inhibited by indomethacin or aspirin both rIL-1 alpha and beta (greater than or equal to 1 ng/ml) markedly increased SMC growth. In longer-term experiments (7-28 d) rIL-1 stimulated the growth of SMC even in the absence of cyclooxygenase inhibitors. The addition of exogenous PGE1 or PGE2 (but not PGF1 alpha, PGF2 alpha, PGI2) to indomethacin-treated SMC blocked their mitogenic response to rIL-1. Antibody to IL-1 (but not to platelet-derived growth factor [PDGF]) abolished the mitogenic response of SMC to rIL-1. Exposure of SMC to rIL-1 or PDGF caused rapid (maximal at 1 h) and transient (baseline by 3 h) expression of the c-fos proto-oncogene, determined by Northern analysis. We conclude that IL-1 is a potent mitogen for human SMC. Endogenous prostanoid production simultaneously induced by IL-1 appears to antagonize this growth-promoting effect in the short term (2 d) but not during more prolonged exposures. IL-1 produced by activated monocytes at sites of tissue inflammation or injury may thus mediate both positive and negative effects on SMC proliferation that are temporally distinct
Landau equations and asymptotic operation
The pinched/non-pinched classification of intersections of causal
singularities of propagators in Minkowski space is reconsidered in the context
of the theory of asymptotic operation as a first step towards extension of the
latter to non-Euclidean asymptotic regimes. A highly visual
distribution-theoretic technique of singular wave fronts is tailored to the
needs of the theory of Feynman diagrams. Besides a simple derivation of the
usual Landau equations in the case of the conventional singularities, the
technique naturally extends to other types of singularities e.g. due to linear
denominators in non-covariant gauges etc. As another application, the results
of Euclidean asymptotic operation are extended to a class of quasi-Euclidean
asymptotic regimes in Minkowski space.Comment: 15p PS (GSview), IJMP-A (accepted
Petawatt laser absorption bounded
The interaction of petawatt () lasers with solid matter
forms the basis for advanced scientific applications such as table-top particle
accelerators, ultrafast imaging systems and laser fusion. Key metrics for these
applications relate to absorption, yet conditions in this regime are so
nonlinear that it is often impossible to know the fraction of absorbed light
, and even the range of is unknown. Here using a relativistic
Rankine-Hugoniot-like analysis, we show for the first time that exhibits a
theoretical maximum and minimum. These bounds constrain nonlinear absorption
mechanisms across the petawatt regime, forbidding high absorption values at low
laser power and low absorption values at high laser power. For applications
needing to circumvent the absorption bounds, these results will accelerate a
shift from solid targets, towards structured and multilayer targets, and lead
the development of new materials
Прогностические факторы повторного образования полипов желудка после проведения эндоскопической полипэктомии
полипыЖЕЛУДКА БОЛЕЗНИХИРУРГИЧЕСКИЕ ОПЕРАЦИИ МАЛОИНВАЗИВНЫЕЭНДОСКОПИЯ ГАСТРОИНТЕСТИНАЛЬНАЯжелудокРЕЦИДИВполипэктоми
Equilibrium and Disorder-induced behavior in Quantum Light-Matter Systems
We analyze equilibrium properties of coupled-doped cavities described by the
Jaynes-Cummings- Hubbard Hamiltonian. In particular, we characterize the
entanglement of the system in relation to the insulating-superfluid phase
transition. We point out the existence of a crossover inside the superfluid
phase of the system when the excitations change from polaritonic to purely
photonic. Using an ensemble statistical approach for small systems and
stochastic-mean-field theory for large systems we analyze static disorder of
the characteristic parameters of the system and explore the ground state
induced statistics. We report on a variety of glassy phases deriving from the
hybrid statistics of the system. On-site strong disorder induces insulating
behavior through two different mechanisms. For disorder in the light-matter
detuning, low energy cavities dominate the statistics allowing the excitations
to localize and bunch in such cavities. In the case of disorder in the light-
matter coupling, sites with strong coupling between light and matter become
very significant, which enhances the Mott-like insulating behavior. Inter-site
(hopping) disorder induces fluidity and the dominant sites are strongly coupled
to each other.Comment: about 10 pages, 12 figure
Biology and Clinical Significance of Virulence Plasmids in Salmonella Serovars
Non-typhoid Salmonella strains containing virulence plasmids are highly associated with bacteremia and disseminated infection in humans. These plasmids are found in Salmonella serovars adapted to domestic animals, such as Salmonella dublin and Salmonella choleraesuis, as well as in the widely distributed pathogens Salmonella typhimurium and Salmonella enteritidis. Although virulence plasmids differ between serovars, all contain a highly conserved 8-kb region containing the spv locus that encodes the spvR regulatory gene and four structural spvABCD genes. Studies in mice suggest that the spv genes enhance the ability of Salmonella strains to grow within cells of the reticuloendothelial system. The spv genes are not expressed during exponential growth in vitro but are rapidly induced following entry of Salmonella strains into mammalian cells, including macrophages. Transcription of the spv genes is controlled by the stationary-phase (T factor RpoS, and mutations in RpoS abolish virulence. These studies suggest that the ability of Salmonella strains to respond to starvation stress in the host tissues is an essential component of virulenc
- …
