2,774 research outputs found
Searching for the expelled hydrogen envelope in Type I supernovae via late-time H-alpha emission
We report the first results from our long-term observational survey aimed at
discovering late-time interaction between the ejecta of hydrogen-poor Type I
supernovae and the hydrogen-rich envelope expelled from the progenitor star
several decades/centuries before explosion. The expelled envelope, moving with
a velocity of ~10 -- 100 km s, is expected to be caught up by the
fast-moving SN ejecta several years/decades after explosion depending on the
history of the mass-loss process acting in the progenitor star prior to
explosion. The collision between the SN ejecta and the circumstellar envelope
results in net emission in the Balmer-lines, especially in H-alpha. We look for
signs of late-time H-alpha emission in older Type Ia/Ibc/IIb SNe having
hydrogen-poor ejecta, via narrow-band imaging. Continuum-subtracted H-alpha
emission has been detected for 13 point sources: 9 SN Ibc, 1 SN IIb and 3 SN Ia
events. Thirty-eight SN sites were observed on at least two epochs, from which
three objects (SN 1985F, SN 2005kl, SN 2012fh) showed significant temporal
variation in the strength of their H-alpha emission in our DIAFI data. This
suggests that the variable emission is probably not due to nearby H II regions
unassociated with the SN, and hence is an important additional hint that
ejecta-CSM interaction may take place in these systems. Moreover, we
successfully detected the late-time H-alpha emission from the Type Ib SN 2014C,
which was recently discovered as a strongly interacting SN in various (radio,
infrared, optical and X-ray) bands.Comment: 8 pages, 7 figures, accepted in Ap
A Dedicated M-Dwarf Planet Search Using The Hobby-Eberly Telescope
We present first results of our planet search program using the 9.2 meter
Hobby-Eberly Telescope (HET) at McDonald Observatory to detect planets around
M-type dwarf stars via high-precision radial velocity (RV) measurements.
Although more than 100 extrasolar planets have been found around solar-type
stars of spectral type F to K, there is only a single M-dwarf (GJ 876, Delfosse
et al. 1998; Marcy et al. 1998; Marcy et al. 2001) known to harbor a planetary
system. With the current incompleteness of Doppler surveys with respect to
M-dwarfs, it is not yet possible to decide whether this is due to a fundamental
difference in the formation history and overall frequency of planetary systems
in the low-mass regime of the Hertzsprung-Russell diagram, or simply an
observational bias. Our HET M-dwarf survey plans to survey 100 M-dwarfs in the
next 3 to 4 years with the primary goal to answer this question. Here we
present the results from the first year of the survey which show that our
routine RV-precision for M-dwarfs is 6 m/s. We found that GJ 864 and GJ 913 are
binary systems with yet undetermined periods, while 5 out of 39 M-dwarfs reveal
a high RV-scatter and represent candidates for having short-periodic planetary
companions. For one of them, GJ 436 (rms = 20.6 m/s), we have already obtained
follow-up observations but no periodic signal is present in the RV-data.Comment: 12 pages, 14 figures, accepted for publication in the Astronomical
Journa
A New Approach to Time Domain Classification of Broadband Noise in Gravitational Wave Data
Broadband noise in gravitational wave (GW) detectors, also known as triggers,
can often be a deterrant to the efficiency with which astrophysical search
pipelines detect sources. It is important to understand their instrumental or
environmental origin so that they could be eliminated or accounted for in the
data. Since the number of triggers is large, data mining approaches such as
clustering and classification are useful tools for this task. Classification of
triggers based on a handful of discrete properties has been done in the past. A
rich information content is available in the waveform or 'shape' of the
triggers that has had a rather restricted exploration so far. This paper
presents a new way to classify triggers deriving information from both trigger
waveforms as well as their discrete physical properties using a sequential
combination of the Longest Common Sub-Sequence (LCSS) and LCSS coupled with
Fast Time Series Evaluation (FTSE) for waveform classification and the
multidimensional hierarchical classification (MHC) analysis for the grouping
based on physical properties. A generalized k-means algorithm is used with the
LCSS (and LCSS+FTSE) for clustering the triggers using a validity measure to
determine the correct number of clusters in absence of any prior knowledge. The
results have been demonstrated by simulations and by application to a segment
of real LIGO data from the sixth science run.Comment: 16 pages, 16 figure
Automatic Reconstruction of Fault Networks from Seismicity Catalogs: 3D Optimal Anisotropic Dynamic Clustering
We propose a new pattern recognition method that is able to reconstruct the
3D structure of the active part of a fault network using the spatial location
of earthquakes. The method is a generalization of the so-called dynamic
clustering method, that originally partitions a set of datapoints into
clusters, using a global minimization criterion over the spatial inertia of
those clusters. The new method improves on it by taking into account the full
spatial inertia tensor of each cluster, in order to partition the dataset into
fault-like, anisotropic clusters. Given a catalog of seismic events, the output
is the optimal set of plane segments that fits the spatial structure of the
data. Each plane segment is fully characterized by its location, size and
orientation. The main tunable parameter is the accuracy of the earthquake
localizations, which fixes the resolution, i.e. the residual variance of the
fit. The resolution determines the number of fault segments needed to describe
the earthquake catalog, the better the resolution, the finer the structure of
the reconstructed fault segments. The algorithm reconstructs successfully the
fault segments of synthetic earthquake catalogs. Applied to the real catalog
constituted of a subset of the aftershocks sequence of the 28th June 1992
Landers earthquake in Southern California, the reconstructed plane segments
fully agree with faults already known on geological maps, or with blind faults
that appear quite obvious on longer-term catalogs. Future improvements of the
method are discussed, as well as its potential use in the multi-scale study of
the inner structure of fault zones
Long-lived, long-period radial velocity variations in Aldebaran: A planetary companion and stellar activity
We investigate the nature of the long-period radial velocity variations in
Alpha Tau first reported over 20 years ago. We analyzed precise stellar radial
velocity measurements for Alpha Tau spanning over 30 years. An examination of
the Halpha and Ca II 8662 spectral lines, and Hipparcos photometry was also
done to help discern the nature of the long-period radial velocity variations.
Our radial velocity data show that the long-period, low amplitude radial
velocity variations are long-lived and coherent. Furthermore, Halpha equivalent
width measurements and Hipparcos photometry show no significant variations with
this period. Another investigation of this star established that there was no
variability in the spectral line shapes with the radial velocity period. An
orbital solution results in a period of P = 628.96 +/- 0.90 d, eccentricity, e
= 0.10 +/- 0.05, and a radial velocity amplitude, K = 142.1 +/- 7.2 m/s.
Evolutionary tracks yield a stellar mass of 1.13 +/- 0.11 M_sun, which
corresponds to a minimum companion mass of 6.47 +/- 0.53 M_Jup with an orbital
semi-major axis of a = 1.46 +/- 0.27 AU. After removing the orbital motion of
the companion, an additional period of ~ 520 d is found in the radial velocity
data, but only in some time spans. A similar period is found in the variations
in the equivalent width of Halpha and Ca II. Variations at one-third of this
period are also found in the spectral line bisector measurements. The 520 d
period is interpreted as the rotation modulation by stellar surface structure.
Its presence, however, may not be long-lived, and it only appears in epochs of
the radial velocity data separated by 10 years. This might be due to an
activity cycle. The data presented here provide further evidence of a planetary
companion to Alpha Tau, as well as activity-related radial velocity variations.Comment: 18 pages, 14 figures. Accepted for publication in Astronomy and
Astrophysic
The Kepler Follow-up Observation Program
The Kepler Mission was launched on March 6, 2009 to perform a photometric
survey of more than 100,000 dwarf stars to search for terrestrial-size planets
with the transit technique. Follow-up observations of planetary candidates
identified by detection of transit-like events are needed both for
identification of astrophysical phenomena that mimic planetary transits and for
characterization of the true planets and planetary systems found by Kepler. We
have developed techniques and protocols for detection of false planetary
transits and are currently conducting observations on 177 Kepler targets that
have been selected for follow-up. A preliminary estimate indicates that between
24% and 62% of planetary candidates selected for follow-up will turn out to be
true planets.Comment: 12 pages, submitted to the Astrophysical Journal Letter
Exploring The Frequency Of Close-In Jovian Planets Around M Dwarfs
We discuss our high precision radial velocity results of a sample of 90 M dwarfs observed with the Hobby-Eberly Telescope and the Harlan J. Smith 2.7 m Telescope at McDonald Observatory, as well as the ESO VLT and the Keck I telescopes, within the context of the overall frequency of Jupiter-mass planetary companions to main sequence stars. None of the stars in our sample show variability indicative of a giant planet in a short period orbit, with a 3.8 M_Jup and a 3.5 M_Jup and a < 0.7 AU. Our results point toward a generally lower frequency of close-in Jovian planets for M dwarfs as compared to FGK-type stars. This is an important piece of information for our understanding of the process of planet formation as a function of stellar mass
Comprehensive Analysis of Coronal Mass Ejection Mass and Energy Properties Over a Full Solar Cycle
The LASCO coronagraphs, in continuous operation since 1995, have observed the
evolution of the solar corona and coronal mass ejections (CMEs) over a full
solar cycle with high quality images and regular cadence. This is the first
time that such a dataset becomes available and constitutes a unique resource
for the study of CMEs. In this paper, we present a comprehensive investigation
of the solar cycle dependence on the CME mass and energy over a full solar
cycle (1996-2009) including the first in-depth discussion of the mass and
energy analysis methods and their associated errors. Our analysis provides
several results worthy of further studies. It demonstrates the possible
existence of two event classes; 'normal' CMEs reaching constant mass for
R_{\sun} and 'pseudo' CMEs which disappear in the C3 FOV. It shows that the
mass and energy properties of CME reach constant levels, and therefore should
be measured, only above \sim 10 R_\sun. The mass density (g/R_\sun^2) of
CMEs varies relatively little ( order of magnitude) suggesting that the
majority of the mass originates from a small range in coronal heights. We find
a sudden reduction in the CME mass in mid-2003 which may be related to a change
in the electron content of the large scale corona and we uncover the presence
of a six-month periodicity in the ejected mass from 2003 onwards.Comment: 42 pages, 16 figures, To appear in Astrophysical Journa
Segmentation of Fault Networks Determined from Spatial Clustering of Earthquakes
We present a new method of data clustering applied to earthquake catalogs,
with the goal of reconstructing the seismically active part of fault networks.
We first use an original method to separate clustered events from uncorrelated
seismicity using the distribution of volumes of tetrahedra defined by closest
neighbor events in the original and randomized seismic catalogs. The spatial
disorder of the complex geometry of fault networks is then taken into account
by defining faults as probabilistic anisotropic kernels, whose structures are
motivated by properties of discontinuous tectonic deformation and previous
empirical observations of the geometry of faults and of earthquake clusters at
many spatial and temporal scales. Combining this a priori knowledge with
information theoretical arguments, we propose the Gaussian mixture approach
implemented in an Expectation-Maximization (EM) procedure. A cross-validation
scheme is then used and allows the determination of the number of kernels that
should be used to provide an optimal data clustering of the catalog. This
three-steps approach is applied to a high quality relocated catalog of the
seismicity following the 1986 Mount Lewis () event in California and
reveals that events cluster along planar patches of about 2 km, i.e.
comparable to the size of the main event. The finite thickness of those
clusters (about 290 m) suggests that events do not occur on well-defined
euclidean fault core surfaces, but rather that the damage zone surrounding
faults may be seismically active at depth. Finally, we propose a connection
between our methodology and multi-scale spatial analysis, based on the
derivation of spatial fractal dimension of about 1.8 for the set of hypocenters
in the Mnt Lewis area, consistent with recent observations on relocated
catalogs
- …
