938 research outputs found
Sources, fate, and pathways of Leeuwin Current water in the Indian Ocean and Great Australian Bight: A Lagrangian study in an eddy-resolving ocean model
The Leeuwin Current is the dominant circulation feature in the eastern Indian Ocean, transporting tropical and subtropical water southward. While it is known that the Leeuwin Current draws its water from a multitude of sources, existing Indian Ocean circulation schematics have never quantified the fluxes of tropical and subtropical source water flowing into the Leeuwin Current. This paper uses virtual Lagrangian particles to quantify the transport of these sources along the Leeuwin Current's mean pathway. Here the pathways and exchange of Leeuwin Current source waters across six coastally bound sectors on the south-west Australian coast are analyzed. This constitutes the first quantitative assessment of Leeuwin Current pathways within an offline, 50 year integration time, eddy-resolving global ocean model simulation. Along the Leeuwin Current's pathway, we find a mean poleward transport of 3.7 Sv in which the tropical sources account for 60-78% of the transport. While the net transport is small, we see large transports flowing in and out of all the offshore boundaries of the Leeuwin Current sectors. Along the Leeuwin Current's pathway, we find that water from the Indonesian Throughflow contributes 50-66% of the seasonal signal. By applying conditions on the routes particles take entering the Leeuwin Current, we find particles are more likely to travel offshore north of 30°S, while south of 30°S, particles are more likely to continue downstream. We find a 0.2 Sv pathway of water from the Leeuwin Current's source regions, flowing through the entire Leeuwin Current pathway into the Great Australian Bight
Morphological variation of the spermatheca in the garden snail Cantareus aspersus - article in French with an abridged English version
articleSpermathecal morphology is known to play an important role in postcopulatory sexual selection of many invertebrates. In helicid land snails, the spermatheca is subdivided into tubules, whose number is sometimes subject to a strong inter-individual variation. Significance of this variation for postcopulatory sexual selection is unknown, but it might be related to cryptic female choice. In the present work, we have investigated the fine multi-tubular structure of the sperm storage organ in Cantareus aspersus. We found between 3 and 13 tubules per individual in a single population, which represents a degree of variation rarely observed in helicid land snails
Explicit representation and parametrised impacts of under ice shelf seas in the z∗ coordinate ocean model NEMO 3.6
Ice-shelf-ocean interactions are a major source of freshwater on the Antarctic continental shelf and have a strong impact on ocean properties, ocean circulation and sea ice. However, climate models based on the ocean-sea ice model NEMO (Nucleus for European Modelling of the Ocean) currently do not include these interactions in any detail. The capability of explicitly simulating the circulation beneath ice shelves is introduced in the non-linear free surface model NEMO. Its implementation into the NEMO framework and its assessment in an idealised and realistic circum-Antarctic configuration is described in this study. Compared with the current prescription of ice shelf melting (i.e. at the surface), inclusion of open sub-ice-shelf cavities leads to a decrease in sea ice thickness along the coast, a weakening of the ocean stratification on the shelf, a decrease in salinity of high-salinity shelf water on the Ross and Weddell sea shelves and an increase in the strength of the gyres that circulate within the over-deepened basins on the West Antarctic continental shelf. Mimicking the overturning circulation under the ice shelves by introducing a prescribed meltwater flux over the depth range of the ice shelf base, rather than at the surface, is also assessed. It yields similar improvements in the simulated ocean properties and circulation over the Antarctic continental shelf to those from the explicit ice shelf cavity representation. With the ice shelf cavities opened, the widely used "three equation" ice shelf melting formulation, which enables an interactive computation of melting, is tested. Comparison with observational estimates of ice shelf melting indicates realistic results for most ice shelves. However, melting rates for the Amery, Getz and George VI ice shelves are considerably overestimated
Model simulations on the long-term dispersal of 137Cs released into the Pacific Ocean off Fukushima
A sequence of global ocean circulation models, with horizontal mesh sizes of 0.5°, 0.25° and 0.1°, are used to estimate the long-term dispersion by ocean currents and mesoscale eddies of a slowly decaying tracer (half-life of 30 years, comparable to that of 137Cs) from the local waters off the Fukushima Dai-ichi Nuclear Power Plants. The tracer was continuously injected into the coastal waters over some weeks; its subsequent spreading and dilution in the Pacific Ocean was then simulated for 10 years. The simulations do not include any data assimilation, and thus, do not account for the actual state of the local ocean currents during the release of highly contaminated water from the damaged plants in March–April 2011. An ensemble differing in initial current distributions illustrates their importance for the tracer patterns evolving during the first months, but suggests a minor relevance for the large-scale tracer distributions after 2–3 years. By then the tracer cloud has penetrated to depths of more than 400 m, spanning the western and central North Pacific between 25°N and 55°N, leading to a rapid dilution of concentrations. The rate of dilution declines in the following years, while the main tracer patch propagates eastward across the Pacific Ocean, reaching the coastal waters of North America after about 5–6 years. Tentatively assuming a value of 10 PBq for the net 137Cs input during the first weeks after the Fukushima incident, the simulation suggests a rapid dilution of peak radioactivity values to about 10 Bq m−3 during the first two years, followed by a gradual decline to 1–2 Bq m−3 over the next 4–7 years. The total peak radioactivity levels would then still be about twice the pre-Fukushima values
Wind Forced Variability in Eddy Formation, Eddy Shedding, and the Separation of the East Australian Current
The East Australian Current (EAC), like many other subtropical western boundary currents, is believed to be penetrating further poleward in recent decades. Previous observational and model studies have used steady state dynamics to relate changes in the westerly winds to changes in the separation behavior of the EAC. As yet, little work has been undertaken on the impact of forcing variability on the EAC and Tasman Sea circulation. Here using an eddy‐permitting regional ocean model, we present a suite of simulations forced by the same time‐mean fields, but with different atmospheric and remote ocean variability. These eddy‐permitting results demonstrate the nonlinear response of the EAC to variable, nonstationary inhomogeneous forcing. These simulations show an EAC with high intrinsic variability and stochastic eddy shedding. We show that wind stress variability on time scales shorter than 56 days leads to increases in eddy shedding rates and southward eddy propagation, producing an increased transport and southward reach of the mean EAC extension. We adopt an energetics framework that shows the EAC extension changes to be coincident with an increase in offshore, upstream eddy variance (via increased barotropic instability) and increase in subsurface mean kinetic energy along the length of the EAC. The response of EAC separation to regional variable wind stress has important implications for both past and future climate change studies
Calibration of quasi-static aberrations in exoplanet direct-imaging instruments with a Zernike phase-mask sensor. II. Concept validation with ZELDA on VLT/SPHERE
Warm or massive gas giant planets, brown dwarfs, and debris disks around
nearby stars are now routinely observed by dedicated high-contrast imaging
instruments on large, ground-based observatories. These facilities include
extreme adaptive optics (ExAO) and state-of-the-art coronagraphy to achieve
unprecedented sensitivities for exoplanet detection and spectral
characterization. However, differential aberrations between the ExAO sensing
path and the science path represent a critical limitation for the detection of
giant planets with a contrast lower than a few at very small
separations (<0.3\as) from their host star. In our previous work, we proposed a
wavefront sensor based on Zernike phase contrast methods to circumvent this
issue and measure these quasi-static aberrations at a nanometric level. We
present the design, manufacturing and testing of ZELDA, a prototype that was
installed on VLT/SPHERE during its reintegration in Chile. Using the internal
light source of the instrument, we performed measurements in the presence of
Zernike or Fourier modes introduced with the deformable mirror. Our
experimental and simulation results are consistent, confirming the ability of
our sensor to measure small aberrations (<50 nm rms) with nanometric accuracy.
We then corrected the long-lived non-common path aberrations in SPHERE based on
ZELDA measurements. We estimated a contrast gain of 10 in the coronagraphic
image at 0.2\as, reaching the raw contrast limit set by the coronagraph in the
instrument. The simplicity of the design and its phase reconstruction algorithm
makes ZELDA an excellent candidate for the on-line measurements of quasi-static
aberrations during the observations. The implementation of a ZELDA-based
sensing path on the current and future facilities (ELTs, future space missions)
could ease the observation of the cold gaseous or massive rocky planets around
nearby stars.Comment: 13 pages, 12 figures, A&A accepted on June 3rd, 2016. v2 after
language editin
Marine biogeochemical responses to the North Atlantic Oscillation in a coupled climate model
In this study a coupled ocean-atmosphere model containing interactive marine biogeochemistry is used to analyze interannual, lagged, and decadal marine biogeochemical responses to the North Atlantic Oscillation (NAO), the dominant mode of North Atlantic atmospheric variability. The coupled model adequately reproduces present-day climatologies and NAO atmospheric variability. It is shown that marine biogeochemical responses to the NAO are governed by different mechanisms according to the time scale considered. On interannual time scales, local changes in vertical mixing, caused by modifications in air-sea heat, freshwater, and momentum fluxes, are most relevant in influencing phytoplankton growth through light and nutrient limitation mechanisms. At subpolar latitudes, deeper mixing occurring during positive NAO winters causes a slight decrease in late winter chlorophyll concentration due to light limitation and a 10%–20% increase in spring chlorophyll concentration due to higher nutrient availability. The lagged response of physical and biogeochemical properties to a high NAO winter shows some memory in the following 2 years. In particular, subsurface nutrient anomalies generated by local changes in mixing near the American coast are advected along the North Atlantic Current, where they are suggested to affect downstream chlorophyll concentration with 1 year lag. On decadal time scales, local and remote mechanisms act contemporaneously in shaping the decadal biogeochemical response to the NAO. The slow circulation adjustment, in response to NAO wind stress curl anomalies, causes a basin redistribution of heat, freshwater, and biogeochemical properties which, in turn, modifies the spatial structure of the subpolar chlorophyll bloom
Variational assimilation of Lagrangian data in oceanography
We consider the assimilation of Lagrangian data into a primitive equations
circulation model of the ocean at basin scale. The Lagrangian data are
positions of floats drifting at fixed depth. We aim at reconstructing the
four-dimensional space-time circulation of the ocean. This problem is solved
using the four-dimensional variational technique and the adjoint method. In
this problem the control vector is chosen as being the initial state of the
dynamical system. The observed variables, namely the positions of the floats,
are expressed as a function of the control vector via a nonlinear observation
operator. This method has been implemented and has the ability to reconstruct
the main patterns of the oceanic circulation. Moreover it is very robust with
respect to increase of time-sampling period of observations. We have run many
twin experiments in order to analyze the sensitivity of our method to the
number of floats, the time-sampling period and the vertical drift level. We
compare also the performances of the Lagrangian method to that of the classical
Eulerian one. Finally we study the impact of errors on observations.Comment: 31 page
Precision measurement of the half-life and the decay branches of 62Ga
In an experiment performed at the Accelerator Laboratory of the University of
Jyvaskyla, the beta-decay half-life of 62Ga has been studied with high
precision using the IGISOL technique. A half-life of T1/2 = 116.09(17)ms was
measured. Using beta-gamma coincidences, the gamma intensity of the 954keV
transition and an upper limit of the beta-decay feeding of the 0+_2 state have
been extracted. The present experimental results are compared to previous
measurements and their impact on our understanding of the weak interaction is
discussed.Comment: 7 pages, 7 figures, submitted to EPJ
Variant O89 O-Antigen of E. coli Is Associated With Group 1 Capsule Loci and Multidrug Resistance
<p>Bacterial surface polysaccharides play significant roles in fitness and virulence. In Gram-negative bacteria such as Escherichia coli, major surface polysaccharides are lipopolysaccharide (LPS) and capsule, representing O- and K-antigens, respectively. There are multiple combinations of O:K types, many of which are well-characterized and can be related to ecotype or pathotype. In this investigation, we have identified a novel O:K permutation resulting through a process of major genome reorganization in a clade of E. coli. A multidrug-resistant, extended-spectrum β-lactamase (ESBL)-producing strain – E. coli 26561 – represented a prototype of strains combining a locus variant of O89 and group 1 capsular polysaccharide. Specifically, the variant O89 locus in this strain was truncated at gnd, flanked by insertion sequences and located between nfsB and ybdK and we apply the term O89m for this variant. The prototype lacked colanic acid and O-antigen loci between yegH and hisI with this tandem polysaccharide locus being replaced with a group 1 capsule (G1C) which, rather than being a recognized E. coli capsule type, this locus matched to Klebsiella K10 capsule type. A genomic survey identified more than 200 E. coli strains which possessed the O89m locus variant with one of a variety of G1C types. Isolates from our collection with the combination of O89m and G1C all displayed a mucoid phenotype and E. coli 26561 was unusual in exhibiting a mucoviscous phenotype more recognized as a characteristic among Klebsiella strains. Despite the locus truncation and novel location, all O89m:G1C strains examined showed a ladder pattern typifying smooth LPS and also showed high molecular weight, alcian blue-staining polysaccharide in cellular and/or extra-cellular fractions. Expression of both O-antigen and capsule biosynthesis loci were confirmed in prototype strain 26561 through quantitative proteome analysis. Further in silico exploration of more than 200 E. coli strains possessing the O89m:G1C combination identified a very high prevalence of multidrug resistance (MDR) – 85% possessed resistance to three or more antibiotic classes and a high proportion (58%) of these carried ESBL and/or carbapenemase. The increasing isolation of O89m:G1C isolates from extra-intestinal infection sites suggests that these represents an emergent clade of invasive, MDR E. coli.</p
- …
