274 research outputs found

    Dark Matter & Dark Energy from a single scalar field: CMB spectrum and matter transfer function

    Get PDF
    The dual axion model (DAM), yielding bot DM and DE form a PQ-like scalar field solving the strong CP problem, is known to allow a fair fit of CMB data. Recently, however, it was shown that its transfer function exhibits significant anomalies, causing difficulties to fit deep galaxy sample data. Here we show how DAM can be modified to agree with the latter data set. The modification follows the pattern suggested to reconcile any PQ-like approach with gravity. Modified DAM allows precise predictions which can be testable against future CMB and/or deep sample data.Comment: 15 pages, 8 figures, accepted for publication in JCA

    Le Chatelier-Braun principle in cosmological physics

    Full text link
    Assuming that dark energy may be treated as a fluid with a well defined temperature, close to equilibrium, we argue that if nowadays there is a transfer of energy between dark energy and dark matter, it must be such that the latter gains energy from the former and not the other way around.Comment: 6 pages, revtex file, no figures; version accepted for publication in General Relativity and Gravitatio

    Scalar field-perfect fluid correspondence and nonlinear perturbation equations

    Full text link
    The properties of dynamical Dark Energy (DE) and, in particular, the possibility that it can form or contribute to stable inhomogeneities, have been widely debated in recent literature, also in association to a possible coupling between DE and Dark Matter (DM). In order to clarify this issue, in this paper we present a general framework for the study of the nonlinear phases of structure formation, showing the equivalence between two possible descriptions of DE: a scalar field \phi self-interacting through a potential V(\phi) and a perfect fluid with an assigned negative equation of state w(a). This enables us to show that, in the presence of coupling, the mass of DE quanta may increase where large DM condensations are present, so that also DE may partake to the clustering process.Comment: 16 pages, accepted for publication in JCA

    Thermal and Economic Efficiency of Progressive Retrofit Strategies for School Buildings by a Statistical Analysis based Tool

    Get PDF
    Design alternatives in air conditioned buildings may be easily compared just by summing the hourly consumption of primary energy, while quantitative approachs for bioclimatic design strategies are difficult to be assessed and compared. A actively heated and passively cooled school building is considered as an application field of a novel methodology to promote an informed choice about the retrofit strategies to be adopted for buildings, defined as the Gained Comfort Cost (GCC). A functional and significant unit (i.e. a classroom), is used to test different energy retrofit solutions and their performances were compared with a baseline, in terms of the capacity to reduce the indoor air temperature variation. The novel methodology is a visual tool allowing to understand the “distance” of indoor conditions from comfort; the retrofit strategies are promoted to reduce this distance considering however the associated costs (LCC) to deal with actual feasibility

    Numerical study of halo concentrations in dark-energy cosmologies

    Full text link
    We study the concentration parameters, their mass dependence and redshift evolution, of dark-matter halos in different dark-energy cosmologies with constant and time-variable equation of state, and compare them with "standard'' Lambda-CDM and OCDM models. We find that previously proposed algorithms for predicting halo concentrations can be well adapted to dark-energy models. When centred on the analytically expected values, halo concentrations show a log-normal distribution with a uniform standard deviation of ~0.2. The dependence of averaged halo concentrations on mass and redshift permits a simple fit of the form (1+z) c=c0 (M/M0)^a, with a~-0.1 throughout. We find that the cluster concentration depends on the dark energy equation of state at the cluster formation redshift z_{coll} through the linear growth factor D_+(z_{coll}). As a simple correction accounting for dark-energy cosmologies, we propose scaling c0 from Lambda-CDM with the ratio of linear growth factors, c0 -> c0 D_+(z_{coll})/D_{+,Lambda-CDM}(z_{coll}).Comment: 11 pages, submitted to Astronomy & Astrophysic

    Dynamical Dark Energy simulations: high accuracy Power Spectra at high redshift

    Full text link
    Accurate predictions on non--linear power spectra, at various redshift z, will be a basic tool to interpret cosmological data from next generation mass probes, so obtaining key information on Dark Energy nature. This calls for high precision simulations, covering the whole functional space of w(z) state equations and taking also into account the admitted ranges of other cosmological parameters; surely a difficult task. A procedure was however suggested, able to match the spectra at z=0, up to k~3, hMpc^{-1}, in cosmologies with an (almost) arbitrary w(z), by making recourse to the results of N-body simulations with w = const. In this paper we extend such procedure to high redshift and test our approach through a series of N-body gravitational simulations of various models, including a model closely fitting WMAP5 and complementary data. Our approach detects w= const. models, whose spectra meet the requirement within 1% at z=0 and perform even better at higher redshift, where they are close to a permil precision. Available Halofit expressions, extended to (constant) w \neq -1 are unfortunately unsuitable to fit the spectra of the physical models considered here. Their extension to cover the desired range should be however feasible, and this will enable us to match spectra from any DE state equation.Comment: method definitely improved in semplicity and efficacy,accepted for publication on JCA

    Cosmic Microwave Background Polarization and reionization: constraining models with a double reionization

    Full text link
    Neutral hydrogen around high-z QSO and an optical depth tau ~ 0.17 can be reconciled if reionization is more complex than a single transition at z ~ 6-8. Tracing its details could shed a new light on the first sources of radiation. Here we discuss how far such details can be inspected through planned experiments on CMB large-scale anisotropy and polarization, by simulating an actual data analysis. By considering a set of double reionization histories of Cen (2003) type, a relevant class of models not yet considered by previous works, we confirm that large angle experiments rival high resolution ones in reconstructing the reionization history. We also confirm that reionization histories, studied with the prior of a single and sharp reionization, yield a biased tau, showing that this bias is generic. We further find a monotonic trend in the bias for the models that we consider, and propose an explanation of the trend, as well as the overall bias. We also show that in long-lived experiments such a trend can be used to discriminate between single and double reionization patterns.Comment: 8 pages, 11 figures. Substantial rewriting, replaced with accepted version. To be published in A&

    Early Dark Energy at High Redshifts: Status and Perspectives

    Full text link
    Early dark energy models, for which the contribution to the dark energy density at high redshifts is not negligible, influence the growth of cosmic structures and could leave observable signatures that are different from the standard cosmological constant cold dark matter (Λ\LambdaCDM) model. In this paper, we present updated constraints on early dark energy using geometrical and dynamical probes. From WMAP five-year data, baryon acoustic oscillations and type Ia supernovae luminosity distances, we obtain an upper limit of the dark energy density at the last scattering surface (lss), ΩEDE(zlss)<2.3×102\Omega_{\rm EDE}(z_{\rm lss})<2.3\times10^{-2} (95% C.L.). When we include higher redshift observational probes, such as measurements of the linear growth factors, Gamma-Ray Bursts (GRBs) and Lyman-α\alpha forest (\lya), this limit improves significantly and becomes ΩEDE(zlss)<1.4×103\Omega_{\rm EDE}(z_{\rm lss})<1.4\times10^{-3} (95% C.L.). Furthermore, we find that future measurements, based on the Alcock-Paczy\'nski test using the 21cm neutral hydrogen line, on GRBs and on the \lya forest, could constrain the behavior of the dark energy component and distinguish at a high confidence level between early dark energy models and pure Λ\LambdaCDM. In this case, the constraints on the amount of early dark energy at the last scattering surface improve by a factor ten, when compared to present constraints. We also discuss the impact on the parameter γ\gamma, the growth rate index, which describes the growth of structures in standard and in modified gravity models.Comment: 11 pages, 9 figures and 4 table
    corecore