1,919 research outputs found

    A call for public archives for biological image data

    Get PDF
    Public data archives are the backbone of modern biological and biomedical research. While archives for biological molecules and structures are well-established, resources for imaging data do not yet cover the full range of spatial and temporal scales or application domains used by the scientific community. In the last few years, the technical barriers to building such resources have been solved and the first examples of scientific outputs from public image data resources, often through linkage to existing molecular resources, have been published. Using the successes of existing biomolecular resources as a guide, we present the rationale and principles for the construction of image data archives and databases that will be the foundation of the next revolution in biological and biomedical informatics and discovery.Comment: 13 pages, 1 figur

    The gene for trypsin inhibitor CMe is regulated in trans by the lys 3a locus in the endosperm of barley (Hordeum vulgare L.)

    Full text link
    A cDNA encoding trypsin inhibitor CMe from barley endosperm has been cloned and characterized. The longest open reading frame of the cloned cDNA codes for a typical signal peptide of 24 residues followed by a sequence which is identical to the known amino acid sequence of the inhibitor, except for an Ile/Leu substitution at position 59. Southern blot analysis of wheat-barley addition lines has shown that chromosome 3H of barley carries the gene for CMe. This protein is present at less than 2%–3% of the wild-type amount in the mature endosperm of the mutant Risø 1508 with respect to Bomi barley, from which it has been derived, and the corresponding steady state levels of the CMe mRNA are about I%. One or two copies of the CMe gene (synonym Itc1) per haploid genome have been estimated both in the wild type and in the mutant, and DNA restriction patterns are identical in both stocks, so neither a change in copy number nor a major rearrangement of the structural gene account for the markedly decreased expression. The mutation at the lys 3a locus in Risø 1508 has been previously mapped in chromosome 7 (synonym 5H). A single dose of the wild-type allele at this locus (Lys 3a) restores the expression of gene CMe (allele CMe-1) in chromosome 3H to normal levels

    Use of Site-Specifically Tethered Chemical Nucleases to Study Macromolecular Reactions

    Get PDF
    During a complex macromolecular reaction multiple changes in molecular conformation and interactions with ligands may occur. X-ray crystallography may provide only a limited set of snapshots of these changes. Solution methods can augment such structural information to provide a more complete picture of a macromolecular reaction. We analyzed the changes in protein conformation and protein:nucleic acid interactions which occur during transcription initiation by using a chemical nuclease tethered to cysteines introduced site-specifically into the RNA polymerase of bacteriophage T7 (T7 RNAP). Changes in cleavage patterns as the polymerase steps through transcription reveal a series of structural transitions which mediate transcription initiation. Cleavage by tethered chemical nucleases is seen to be a powerful method for revealing the conformational dynamics of macromolecular reactions, and has certain advantages over cross-linking or energy transfer approaches

    Stabilization of G-quadruplex in the BCL2 promoter region in double-stranded DNA by invading short PNAs

    Get PDF
    Numerous regulatory genes have G-rich regions that can potentially form quadruplex structures, possibly playing a role in transcription regulation. We studied a G-rich sequence in the BCL2 gene 176-bp upstream of the P1 promoter for G-quadruplex formation. Using circular dichroism (CD), thermal denaturation and dimethyl sulfate (DMS) footprinting, we found that a single-stranded oligonucleotide with the sequence of the BCL2 G-rich region forms a potassium-stabilized G-quadruplex. To study G-quadruplex formation in double-stranded DNA, the G-rich sequence of the BCL2 gene was inserted into plasmid DNA. We found that a G-quadruplex did not form in the insert at physiological conditions. To induce G-quadruplex formation, we used short peptide nucleic acids (PNAs) that bind to the complementary C-rich strand. We examined both short duplex-forming PNAs, complementary to the central part of the BCL2 gene, and triplex-forming bis-PNAs, complementary to sequences adjacent to the G-rich BCL2 region. Using a DMS protection assay, we demonstrated G-quadruplex formation within the G-rich sequence from the promoter region of the human BCL2 gene in plasmid DNA. Our results show that molecules binding the complementary C-strand facilitate G-quadruplex formation and introduce a new mode of PNA-mediated sequence-specific targeting

    The crystal structure of the TetR family transcriptional repressor SimR bound to DNA and the role of a flexible N-terminal extension in minor groove binding

    Get PDF
    SimR, a TetR-family transcriptional regulator (TFR), controls the export of simocyclinone, a potent DNA gyrase inhibitor made by Streptomyces antibioticus. Simocyclinone is exported by a specific efflux pump, SimX and the transcription of simX is repressed by SimR, which binds to two operators in the simR-simX intergenic region. The DNA-binding domain of SimR has a classical helix-turn-helix motif, but it also carries an arginine-rich N-terminal extension. Previous structural studies showed that the N-terminal extension is disordered in the absence of DNA. Here, we show that the N-terminal extension is sensitive to protease cleavage, but becomes protease resistant upon binding DNA. We demonstrate by deletion analysis that the extension contributes to DNA binding, and describe the crystal structure of SimR bound to its operator sequence, revealing that the N-terminal extension binds in the minor groove. In addition, SimR makes a number of sequence-specific contacts to the major groove via its helix-turn-helix motif. Bioinformatic analysis shows that an N-terminal extension rich in positively charged residues is a feature of the majority of TFRs. Comparison of the SimR–DNA and SimR–simocyclinone complexes reveals that the conformational changes associated with ligand-mediated derepression result primarily from rigid-body rotation of the subunits about the dimer interface

    Next-generation sequencing of vertebrate experimental organisms

    Get PDF
    Next-generation sequencing technologies are revolutionizing biology by allowing for genome-wide transcription factor binding-site profiling, transcriptome sequencing, and more recently, whole-genome resequencing. While it is currently not possible to generate complete de novo assemblies of higher-vertebrate genomes using next-generation sequencing, improvements in sequence read lengths and throughput, coupled with new assembly algorithms for large data sets, will soon make this a reality. These developments will in turn spawn a revolution in how genomic data are used to understand genetics and how model organisms are used for disease gene discovery. This review provides an overview of the current next-generation sequencing platforms and the newest computational tools for the analysis of next-generation sequencing data. We also describe how next-generation sequencing may be applied in the context of vertebrate model organism genetics

    The E. coli Anti-Sigma Factor Rsd: Studies on the Specificity and Regulation of Its Expression

    Get PDF
    Background: Among the seven different sigma factors in E. coli s 70 has the highest concentration and affinity for the core RNA polymerase. The E. coli protein Rsd is regarded as an anti-sigma factor, inhibiting s 70-dependent transcription at the onset of stationary growth. Although binding of Rsd to s 70 has been shown and numerous structural studies on Rsd have been performed the detailed mechanism of action is still unknown. Methodology/Principal Findings: We have performed studies to unravel the function and regulation of Rsd expression in vitro and in vivo. Cross-linking and affinity binding revealed that Rsd is able to interact with s 70, with the core enzyme of RNA polymerase and is able to form dimers in solution. Unexpectedly, we find that Rsd does also interact with s 38, the stationary phase-specific sigma factor. This interaction was further corroborated by gel retardation and footprinting studies with different promoter fragments and s 38-ors 70-containing RNA polymerase in presence of Rsd. Under competitive in vitro transcription conditions, in presence of both sigma factors, a selective inhibition of s 70-dependent transcription was prevailing, however. Analysis of rsd expression revealed that the nucleoid-associated proteins H-NS and FIS, StpA and LRP bind to the regulatory region of the rsd promoters. Furthermore, the major promoter P2 was shown to be down-regulated in vivo by RpoS, the stationary phase-specific sigma factor and the transcription factor DksA, while induction of the stringent control enhanced rsd promoter activity. Most notably, the dam-dependent methylation of a cluster of GATC sites turned ou

    A Novel Phase Variation Mechanism in the Meningococcus Driven by a Ligand-Responsive Repressor and Differential Spacing of Distal Promoter Elements

    Get PDF
    Phase variable expression, mediated by high frequency reversible changes in the length of simple sequence repeats, facilitates adaptation of bacterial populations to changing environments and is frequently important in bacterial virulence. Here we elucidate a novel phase variable mechanism for NadA, an adhesin and invasin of Neisseria meningitidis. The NadR repressor protein binds to operators flanking the phase variable tract and contributes to the differential expression levels of phase variant promoters with different numbers of repeats likely due to different spacing between operators. We show that IHF binds between these operators, and may permit looping of the promoter, allowing interaction of NadR at operators located distally or overlapping the promoter. The 4-hydroxyphenylacetic acid, a metabolite of aromatic amino acid catabolism that is secreted in saliva, induces NadA expression by inhibiting the DNA binding activity of the repressor. When induced, only minor differences are evident between NadR-independent transcription levels of promoter phase variants and are likely due to differential RNA polymerase contacts leading to altered promoter activity. Our results suggest that NadA expression is under both stochastic and tight environmental-sensing regulatory control, both mediated by the NadR repressor, and may be induced during colonization of the oropharynx where it plays a major role in the successful adhesion and invasion of the mucosa. Hence, simple sequence repeats in promoter regions may be a strategy used by host-adapted bacterial pathogens to randomly switch between expression states that may nonetheless still be induced by appropriate niche-specific signals
    corecore