32 research outputs found

    Bioassay-guided isolation and identification of antimicrobial compounds from thyme essential oil by means of overpressured layer chromatography, bioautography and GC-MS

    Get PDF
    A simple method is described for efficient isolation of compounds having an antibacterial effect. Two thyme (Thymus vulgaris) essential oils, obtained from the market, were chosen as prospective materials likely to feature several bioactive components when examined by thin layer chromatography coupled with direct bioautography as a screening method. The newly developed infusion overpressured layer chromatographic separation method coupled with direct bioautography assured that only the active components were isolated by means of overrun overpressured layer chromatography with online detection and fractionation. Each of the 5 collected fractions represented one of the five antimicrobial essential oil components designated at the screening. The purity and the activity of the fractions were confirmed with chromatography coupled various detection methods (UV, vanillin-sulphuric acid reagent, direct bioautography). The antibacterial components were identified with GC-MS as thymol, carvacrol, linalool, diethylphthalate, and alpha-terpineol. The oil component diethyl-phthalate is an artificial compound, used as plasticizer or detergent bases in the industry. Our results support that exploiting its flexibility and the possible hyphenations, overpressured layer chromatography is especially attractive for isolation of antimicrobial components from various matrixes

    In-situ Clean-up and OPLC Fractionation of Chamomile Flower Extract Searching Active Components by Bioautography

    Get PDF
    Bioassay-guided isolation of antibacterial components of chamomile flower methanol extract was performed by OPLC with on-line detection, fractionation combined with sample clean-up in-situ in the adsorbent bed after sample application. The antibacterial effect of the fractions and the separated compounds remained on the adsorbent layer (do not overrun during OPLC separation) was tested with direct bioautography (DB) against the bioluminescent Pseudomonas savastanoi pv. maculicola and Vibrio fischeri. The fractions with great biologically activity were analysed by SPME-GC-MS and LC-MS/MS and the two active uneluted compounds were characterized by OPLC-MS using interface. Mainly essential oil components, coumarins, flavonoids, phenolic acids and fatty acids were identified in the fractions

    Study of trace elements in BioArena system and in in vivo conditions

    Get PDF
    The adsorbent layer system is especially suitable for the biological evaluation of different compounds and trace elements as well. Present experiments showed that formaldehyde (HCHO) molecules participate in the antibiotic activity of Cu (II) ion, an „old antibiotic”. The elimination of HCHO from the chromatographic spots (e.g. by reduction or capturing) resulted in a characteristic decrease of the antibiotic effect of trace elements. The trace elements are HCHO carriers and generate a double effect (first step: deprivation of HCHO as also biological effect; second step: release of HCHO with big killing activity). These features offer good opportunities for influencing fundamental biochemical pathways. It has been established that the trace elements (mainly transition metal ions as e.g. Ni(II) ion) always generate quadruple, bioequivalent, specific immune-stimulating activity in plants with a non-linear dose-response. HCHO and its reaction products (mainly O3) are responsible also for this latter activity

    Layer chromatography-bioassays directed screening and identification of antibacterial compounds from Scotch thistle

    Get PDF
    The antibacterial profiling of Onopordum acanthium L. leaf extract and subsequent targeted identification of active compounds is demonstrated. Thin-layer chromatography (TLC) and off-line overpressured layer chromatography (OPLC) coupled with direct bioautography were utilized for investigation of the extract against eight bacterial strains including two plant and three human pathogens and a soil, a marine and a probiotic human gut bacteria. Antibacterial fractions obtaining infusion-transfusion OPLC were transferred to HPLC-MS/MS analysis that resulted in the characterization of three active compounds and two of them were identified as, linoleic and linolenic acid. OPLC method was adopted to preparative-scale flash chromatography for the isolation of the third active compound, which was identified after a further semi-preparative HPLC purification as the germacranolide sesquiterpene lactone onopordopicrin. Pure onopordopicrin exhibited antibacterial activity that was specified as minimal inhibitory concentration in the liquid phase as well

    Workload-dependent capacity control in production-to- order systems Workload-dependent capacity control in production-to-order systems

    No full text
    The development of job intermediation and the increasing use of the Internet allow companies to carry out ever quicker capacity changes. In many cases, capacity can be adapted rapidly to the actual workload, which is especially important in production-to-order systems, where inventory cannot be used as a buffer for demand variation. We introduce a set of Markov chain models to represent workload-dependent capacity control policies. We present two analytical approaches to evaluate the policies' due-date performance based on stationary analysis. One provides an explicit expression of throughput time distribution, the other is a fixed-point iteration method that calculates the moments of the throughput time. We compare due-date performance, capacity, capacity switching, and lost sales costs to select optimal policies. We also give insight into which situations a workload-dependent policy is beneficial to introduce. Our results can be used by manufacturing and service industries when establishing a static policy for dynamic capacity planning
    corecore