1,826 research outputs found
Solute effects on edge dislocation pinning in complex alpha-Fe alloys
Reactor pressure vessel steels are well-known to harden and embrittle under neutron irradiation, mainly because of the formation of obstacles to the motion of dislocations, in particular, precipitates and clusters composed of Cu, Ni, Mn, Si and P. In this paper, we employ two complementary atomistic modelling techniques to study the heterogeneous precipitation and segregation of these elements and their effects on the edge dislocations in BCC iron. We use a special and highly computationally efficient Monte Carlo algorithm in a constrained semi-grand canonical ensemble to compute the equilibrium configurations for solute clusters around the dislocation core. Next, we use standard molecular dynamics to predict and analyze the effect of this segregation on the dislocation mobility. Consistently with expectations our results confirm that the required stress for dislocation unpinning from the precipitates formed on top of it is quite large. The identification of the precipitate resistance allows a quantitative treatment of atomistic results, enabling scale transition towards larger scale simulations, such as dislocation dynamics or phase field.Fil: Pascuet, Maria Ines Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energia Atomica. Centro Atomico Constituyentes. Departamento de Materiales; ArgentinaFil: Martínez, E.. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Monnet, G.. EDF–R&D; FranciaFil: Malerba, L.. SCK•CEN. Structural Materials Expert Group. Nuclear Materials Institute; Bélgic
Turning the tide of antimicrobial resistance: Europe shows the way
To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldTen years ago, European officials, experts and other stakeholders met in Copenhagen, Denmark, at the invitation of the Danish Ministry of Health and the Danish Ministry of Food, Agriculture and Fisheries. This European conference on "The Microbial Threat" due to antimicrobial resistance resulted in the publication of "Copenhagen Recommendations" calling for action to limit the emerging problem of antimicrobial-resistant microorganisms [1]. Following the conference, the European Commission prepared a comprehensive Community strategy against antimicrobial resistance, which was published in 2001 [2] and presented in Eurosurveillance [3]. Later the same year, European Union (EU) Health Ministers adopted a Council Recommendation on the prudent use of antimicrobial agents in human medicine with a series of specific measures aimed at containing the spread of antimicrobial resistance by prudent use of antimicrobial agents [4
VLT Diffraction Limited Imaging and Spectroscopy in the NIR: Weighing the black hole in Centaurus A with NACO
We present high spatial resolution near-infrared spectra and images of the
nucleus of Centaurus A (NGC 5128) obtained with NAOS-CONICA at the VLT. The
adaptive optics corrected data have a spatial resolution of 0.06" (FWHM) in K-
and 0.11" in H-band, four times higher than previous studies. The observed gas
motions suggest a kinematically hot disk which is orbiting a central object and
is oriented nearly perpendicular to the nuclear jet. We model the central
rotation and velocity dispersion curves of the [FeII] gas orbiting in the
combined potential of the stellar mass and the (dominant) black hole. Our
physically most plausible model, a dynamically hot and geometrically thin gas
disk, yields a black hole mass of M_bh = (6.1 +0.6/-0.8) 10^7 M_sun. As the
physical state of the gas is not well understood, we also consider two limiting
cases: first a cold disk model, which completely neglects the velocity
dispersion; it yields an M_bh estimate that is almost two times lower. The
other extreme case is to model a spherical gas distribution in hydrostatic
equilibrium through Jeans equation. Compared to the hot disk model the best-fit
black hole mass increases by a factor of 1.5. This wide mass range spanned by
the limiting cases shows how important the gas physics is even for high
resolution data. Our overall best-fitting black hole mass is a factor of 2-4
lower than previous measurements. With our revised M_bh estimate, Cen A's
offset from the M_bh-sigma relation is significantly reduced; it falls above
this relation by a factor of ~2, which is close to the intrinsic scatter of
this relation. (Abridged)Comment: 12 pages, 14 figures, including minor changes following the referee
report; accepted for publication in The Astrophysical Journa
Scalable N-body code for the modelling of early-type galaxies
Early-type galaxies exhibit a wealth of photometric and dynamical structures.
These signatures are fossil records of their formation and evolution processes.
In order to examine these structures in detail, we build models aimed at
reproducing the observed photometry and kinematics. The developed method is a
generalization of the one introduced by Syer and Tremaine (1996), consisting in
an N-body representation, in which the weights of the particles are changing
with time. Our code is adapted for integral-field spectroscopic data, and is
able to reproduce the photometric as well as stellar kinematic data of observed
galaxies. We apply this technique on SAURON data of early-type galaxies, and
present preliminary results on NGC 3377.Comment: 6 pages, 2 figures. Original version printed in the Proceedings of
"Science perspective for 3D spectroscopy", 2005, Eds Kissler-Patig, Walsh,
Roth, ES0, Springe
NGC 7331: the Galaxy with the Multicomponent Central Region
We present the results of the spectral investigation of the regular Sb galaxy
NGC 7331 with the Multi-Pupil Field Spectrograph of the 6m telescope. The
absorption-line indices H-beta, Mgb, and are mapped to analyse the
properties of the stellar populations in the circumnuclear region of the
galaxy. The central part of the disk inside ~3" (200 pc) -- or a separate
circumnuclear stellar-gaseous disk as it is distinguished by decoupled fast
rotation of the ionized gas -- is very metal-rich, rather young, ~ 2 billion
years old, and its solar magnesium-to-iron ratio evidences for a very long
duration of the last episode of star formation there. However the gas
excitation mechanism now in this disk is shock-like. The star-like nucleus had
probably experienced a secondary star formation burst too: its age is 5 billion
years, much younger than the age of the circumnuclear bulge. But [Mg/Fe]=+0.3
and only solar global metallicity imply that the nuclear star formation burst
has been much shorter than that in the circumnuclear disk. The surrounding
bulge is rather old, 9--14 billion years old, and moderately metal-poor. The
rotation of the stars and gas within the circumnuclear disk is axisymmetric
though its rotation plane may be slightly inclined to the global plane of the
galaxy. Outside the circumnuclear disk the gas may experience non-circular
motions, and we argue that the low-contrast extended bulge of NGC 7331 is
triaxial.Comment: LATEX, 27 pages, + 15 Postscript figures. Accepted to Astronomical
Journal, July issu
The M 31 double nucleus probed with OASIS and HST. A natural m=1 mode?
We present observations with the adaptive optics assisted integral field
spectrograph OASIS of the M 31 double nucleus at a spatial resolution better
than 0.5 arcsec FWHM. These data are used to derive the two-dimensional stellar
kinematics within the central 2 arcsec. Archival WFPC2/HST images are revisited
to perform a photometric decomposition of the nuclear region. We also present
STIS/HST kinematics obtained from the archive. The luminosity distribution of
the central region is well separated into the respective contributions of the
bulge, the nucleus including P1 and P2, and the so-called UV peak. We then show
that the axis joining P1 and P2, the two local surface brightness maxima, does
not coincide with the kinematic major-axis, which is also the major-axis of the
nuclear isophotes (excluding P1). We also confirm that the velocity dispersion
peak is offset by ~ 0.2 arcsec from the UV peak, assumed to mark the location
of the supermassive black hole. The newly reduced STIS/HST velocity and
dispersion profiles are then compared to OASIS and other published kinematics.
We find significant offsets with previously published data. Simple parametric
models are then built to successfully reconcile all the available kinematics.
We finally interpret the observations using new N-body simulations. The nearly
keplerian nuclear disk of M31 is subject to a natural m=1 mode, with a very
slow pattern speed (3 km/s/pc for M_BH = 7 10^7~\Msun), that can be maintained
during more than a thousand dynamical times. The resulting morphology and
kinematics of the mode can reproduce the M~31 nuclear-disk photometry and mean
stellar velocity, including the observed asymmetries. It requires a central
mass concentration and a cold disk system representing between 20 and 40% of
its mass. Abridged..Comment: 21 pages. accepted for publication in A&
Uranium resources, scenarios, nuclear and energy dynamics
ISBN 978-1-49-51-6286-2International audienceA dynamic simulation of coupled supply and demand of energy, resources and nuclear reactors is done with the global model Prospective Outlook for Long Term Energy Supply (POLES) over this century. In this model, both electricity demand and uranium supply are not independent of the cost of all base load electricity suppliers. Uranium consuming Thermal Neutron Reactors and future generation, free from the uranium market once started, breeder reactors are only one part of the market and are in a global competition, not limited to the other nuclear generation. In this paper we present a new model of the impact of uranium scarcity on the development of nuclear reactors. Many scenarios rely on the subjective definition of ultimate uranium resources. We suggest that when uranium will mainly be extracted together with other resources, its cost should not be simply a function of cumulated uranium mined but also of mine yearly outputs. We describe the sensitivities of our model to breeder reactor physical performance indicators. Used fuels can be seen as a liability or as a source of usable material and a scarce resource limiting fast reactor startups in fast development in India or China. We present the impact of synergetic strategies where countries with opposite strategies share used fuels
Phytoplankton dynamics from the Cambrian Explosion to the onset of the Great Ordovician Biodiversification Event: a review of Cambrian acritarch diversity
Most early Palaeozoic acritarchs are thought to represent a part of the marine phytoplankton and so constituted a significant element at the base of the marine trophic chain during the ‘Cambrian Explosion’ and the subsequent ‘Great Ordovician Biodiversification Event.’ Cambrian acritarch occurrences have been recorded in a great number of studies. In this paper, published data on Cambrian acritarchs are assembled in order to reconstruct taxonomic diversity trends that can be compared with the biodiversity of marine invertebrates. We compile a database and calculate various diversity indices at global and regional (i.e. Gondwana or Baltica) scales. The stratigraphic bins applied are at the level of the ten Cambrian stages, or of fourteen commonly used biozones in a somewhat higher resolved scheme. Our results show marked differences between palaeogeographical regions. They also indicate limitations of the data and a potential sampling bias, as the taxonomic diversity indices of species are significantly correlated with the number of studies per stratigraphic bin. The total and normalized diversities of genera are not affected in the same way. The normalized genus diversity curves show a slow but irregular rise over the course of the Cambrian. These also are the least biased. A radiation of species and to a lesser extent of genera in the ‘lower’ Cambrian Series 2 appears to mirror the ‘Cambrian Explosion’ of metazoans. This radiation, not evident on Gondwana, is followed by a prominent low in species diversity in the upper Series 3 and lower Furongian. Highest diversities are reached globally, and on both Baltica and Gondwana, in the uppermost Cambrian Stage 10, more precisely in the Peltura trilobite Zone, preceding a substantial phase of acritarch species extinction below and at the Cambrian/Ordovician boundary. Nearly all the genera present in Stage 10 survived into the Ordovician. The forms that emerged during the Cambrian therefore became the foundation for the more rapid radiation of acritarchs during the ‘Great Ordovician Biodiversification Event’
The FALCON concept: multi-object spectroscopy combined with MCAO in near-IR
A large fraction of the present-day stellar mass was formed between z=0.5 and
z~3 and our understanding of the formation mechanisms at work at these epochs
requires both high spatial and high spectral resolution: one shall
simultaneously} obtain images of objects with typical sizes as small as
1-2kpc(~0''.1), while achieving 20-50 km/s (R >= 5000) spectral resolution. The
obvious instrumental solution to adopt in order to tackle the science goal is
therefore a combination of multi-object 3D spectrograph with multi-conjugate
adaptive optics in large fields. A partial, but still competitive correction
shall be prefered, over a much wider field of view. This can be done by
estimating the turbulent volume from sets of natural guide stars, by optimizing
the correction to several and discrete small areas of few arcsec2 selected in a
large field (Nasmyth field of 25 arcmin) and by correcting up to the 6th, and
eventually, up to the 60th Zernike modes. Simulations on real extragalactic
fields, show that for most sources (>80%), the recovered resolution could reach
0".15-0".25 in the J and H bands. Detection of point-like objects is improved
by factors from 3 to >10, when compared with an instrument without adaptive
correction. The proposed instrument concept, FALCON, is equiped with deployable
mini-integral field units (IFUs), achieving spectral resolutions between R=5000
and 20000. Its multiplex capability, combined with high spatial and spectral
resolution characteristics, is a natural ground based complement to the next
generation of space telescopes.Comment: ESO Workshop Proceedings: Scientific Drivers for ESO Future VLT/VLTI
Instrumentation, 10 pages and 5 figure
Equilibrium Disk-Bulge-Halo Models for the Milky Way and Andromeda Galaxies
We describe a new set of self-consistent, equilibrium disk galaxy models that
incorporate an exponential disk, a Hernquist model bulge, an NFW halo and a
central supermassive black hole. The models are derived from explicit
distribution functions for each component and the large number of parameters
permit detailed modeling of actual galaxies. We present techniques that use
structural and kinematic data such as radial surface brightness profiles,
rotation curves and bulge velocity dispersion profiles to find the best-fit
models for the Milky Way and M31. Through N-body realizations of these models
we explore their stability against the formation of bars. The models permit the
study of a wide range of dynamical phenomenon with a high degree of realism.Comment: 58 pages, 20 figures, submitted to the Astrophysical Journa
- …
