32,791 research outputs found
Asymptotic solution of a model for bilayer organic diodes and solar cells
The current voltage characteristics of an organic semiconductor diode made by placing together two materials with dissimilar electron affinities and ionisation potentials is analysed using asymptotic methods. An intricate boundary layer structure is examined. We find that there are three regimes for the total current passing through the diode. For reverse bias and moderate forward bias the dependency of the voltage on the current is similar to the behaviour of conventional inorganic semiconductor diodes predicted by the Shockley equation and are governed by recombination at the interface of the materials. There is then a narrow range of currents where the behaviour undergoes a transition. Finally for large forward bias the behaviour is different with the current being linear in voltage and is primarily controlled by drift of charges in the organic layers. The size of the interfacial recombination rate is critical in determining the small range of current where there is rapid transition between the two main regimes. The extension of the theory to organic solar cells is discussed and the analogous current voltage curves derived in the regime of interest
Efficient binary phase quantizer based on phase sensitive four wave mixing
We experimentally demonstrate an efficient binary phase quantizer operating at low pump powers. Phase-sensitive operation is obtained by polarization mixing the phase-locked signal/idler pair in a degenerate dual-pump vector parametric amplifier
Recommended from our members
Near infrared spectroscopy of W51 IRS-2
Near-infrared spectra at 2.95-3.5 μm and 3.99-10 μm have been obtained towards W51 IRS-2 and its surroundings, in order to investigate the spatial variations in intensity of the 3.28 μm unidentified feature and the 4.05 μm Brackett-α line. The Br-α and 3.28 μm features occupy a broadly similar spatial zone, which is characterised by an unresolved core responsible for most of the emission, and an extended and considerably weaker halo. Grain properties required to excite the 4.28 microns line, the nature of the 3.28 μm emission, and its relation to the source structure are discussed
Quadrature decomposition of optical fields using two orthogonal phase sensitive amplifiers
We propose a new technique to optically process coherent signals by simultaneously extracting their two (I and Q) quadrature components into two orthogonal polarizations at the same frequency. Two possible implementations are demonstrated
Economic evaluation of a nursing-led intermediate care unit
Objectives: The aim of this paper is to examine the costs of introducing a nursing-led ward program together with examining the impact this may have on patients' outcomes. Methods; The study had a sample size of 177 patients with a mean age of 77, and randomized to either a treatment group (care on a nursing-led ward, n = 97) or a control group (standard care usually on a consultant-led acute ward, n = 80). Resource use data including length of stay, tests and investigations performed, and multidisciplinary involvement in care were collected. Results: There were no significant differences in outcome between the two groups. The inpatient costs for the treatment group were significantly higher, due to the longer length of stay in this group. However, the postdischarge costs were significantly lower for the treatment group. Conclusions: The provision of nursing-led intermediate care units has been proposed as a solution to inappropriate use of acute medical wards by patients who require additional nursing rather than medical care. Whether the treatment group is ultimately cost-additive is dependent on how long reductions in postdischarge resource use are maintained
Particle Acceleration and Radiation associated with Magnetic Field Generation from Relativistic Collisionless Shocks
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas.
Plasma waves and their associated instabilities (e.g., the Buneman instability,
two-streaming instability, and the Weibel instability) created in the shocks
are responsible for particle (electron, positron, and ion) acceleration. Using
a 3-D relativistic electromagnetic particle (REMP) code, we have investigated
particle acceleration associated with a relativistic jet front propagating
through an ambient plasma with and without initial magnetic fields. We find
only small differences in the results between no ambient and weak ambient
magnetic fields. Simulations show that the Weibel instability created in the
collisionless shock front accelerates particles perpendicular and parallel to
the jet propagation direction. The simulation results show that this
instability is responsible for generating and amplifying highly nonuniform,
small-scale magnetic fields, which contribute to the electron's transverse
deflection behind the jet head. The ``jitter'' radiation from deflected
electrons has different properties than synchrotron radiation which is
calculated in a uniform magnetic field. This jitter radiation may be important
to understanding the complex time evolution and/or spectral structure in
gamma-ray bursts, relativistic jets, and supernova remnants.Comment: 4 pages, 1 figure, submitted to Proceedings of 2003 Gamma Ray Burst
Conferenc
Signal regeneration techniques for advanced modulation formats
We review recent results on all-optical regeneration of phase encoded signals based on phase sensitive amplification achieved by avoiding phase-to-amplitude conversion in order to facilitate the regeneration of amplitude/phase encoded (QAM) signals
Particle Acceleration in Relativistic Jets due to Weibel Instability
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas.
Plasma waves and their associated instabilities (e.g., the Buneman instability,
two-streaming instability, and the Weibel instability) created in the shocks
are responsible for particle (electron, positron, and ion) acceleration. Using
a 3-D relativistic electromagnetic particle (REMP) code, we have investigated
particle acceleration associated with a relativistic jet front propagating
through an ambient plasma with and without initial magnetic fields. We find
only small differences in the results between no ambient and weak ambient
magnetic fields. Simulations show that the Weibel instability created in the
collisionless shock front accelerates particles perpendicular and parallel to
the jet propagation direction. While some Fermi acceleration may occur at the
jet front, the majority of electron acceleration takes place behind the jet
front and cannot be characterized as Fermi acceleration. The simulation results
show that this instability is responsible for generating and amplifying highly
nonuniform, small-scale magnetic fields, which contribute to the electron's
transverse deflection behind the jet head. The ``jitter'' radiation (Medvedev
2000) from deflected electrons has different properties than synchrotron
radiation which is calculated in a uniform magnetic field. This jitter
radiation may be important to understanding the complex time evolution and/or
spectral structure in gamma-ray bursts, relativistic jets, and supernova
remnants.Comment: ApJ, in press, Sept. 20, 2003 (figures with better resolution:
http://gammaray.nsstc.nasa.gov/~nishikawa/apjweib.pdf
Novel polarization-assisted phase sensitive optical signal processor requiring low nonlinear phase shifts
We demonstrate a new scheme to achieve binary step-like phase response and high phase-sensitive extinction ratio at low powers. Phase-sensitive operation is achieved by polarization filtering phase-locked signal/idler in a degenerate dual-pump vector parametric amplifier
X-ray emission from PSR B1800-21, its wind nebula, and similar systems
We detected X-ray emission from PSR B1800-21 and its synchrotron nebula with
the Chandra X-ray Observatory. The pulsar's observed flux is (1.4+/-0.2)
10^{-14} ergs cm^{-2} s^{-1} in the 1-6 keV band. The spectrum can be described
by a two-component PL+BB model, suggesting a mixture of thermal and
magnetospheric emission. For a plausible hydrogen column density n_{H}=1.4
10^{22} cm^{-2}, the PL component has a slope Gamma=1.4+/-0.6 and a luminosity
L_{psr}^{nonth}=4 10^{31}(d/4 kpc)^2 ergs s^{-1}. The properties of the thermal
component (kT=0.1-0.3 keV, L^{bol}=10^{31}-10^{33} ergs s^{-1}) are very poorly
constrained because of the strong interstellar absorption. The compact,
7''\times4'', inner pulsar-wind nebula (PWN), elongated perpendicular to the
pulsar's proper motion, is immersed in a fainter asymmetric emission. The
observed flux of the PWN is (5.5+/-0.6) 10^{-14} ergs cm^{-2} s^{-1} in the 1-8
keV band. The PWN spectrum fits by a PL model with Gamma=1.6+/-0.3, L=1.6
10^{32} (d/4 kpc})^2 ergs s^{-1}. The shape of the inner PWN suggests that the
pulsar moves subsonically and X-ray emission emerges from a torus associated
with the termination shock in the equatorial pulsar wind. The inferred
PWN-pulsar properties (e.g., the PWN X-ray efficiency, L_{pwn}/\dot{E}~10^{-4};
the luminosity ratio, L_{pwn}/L_{psr}^{nonth}=4; the pulsar wind pressure at
the termination shock, p_s=10^{-9} ergs cm^{-3}) are very similar to those of
other subsonically moving Vela-like objects detected with Chandra
(L_{pwn}/\dot{E}=10^{-4.5}-10^{-3.5}, L_{pwn}/L_{psr}^{nonth}~5,
p_s=10^{-10}-10^{-8} ergs cm^{-1}).Comment: 11 pages, 10 figures, 2 tables; submitted to ApJ. Version with the
high-resolution figures is available at
http://www.astro.psu.edu/users/green/B1800/B1800_ApJ.pd
- …
