4,110 research outputs found

    Asymmetric soft-error resistant memory

    Get PDF
    A memory system is provided, of the type that includes an error-correcting circuit that detects and corrects, that more efficiently utilizes the capacity of a memory formed of groups of binary cells whose states can be inadvertently switched by ionizing radiation. Each memory cell has an asymmetric geometry, so that ionizing radiation causes a significantly greater probability of errors in one state than in the opposite state (e.g., an erroneous switch from '1' to '0' is far more likely than a switch from '0' to'1'. An asymmetric error correcting coding circuit can be used with the asymmetric memory cells, which requires fewer bits than an efficient symmetric error correcting code

    Critical view of WKB decay widths

    Full text link
    A detailed comparison of the expressions for the decay widths obtained within the semiclassical WKB approximation using different approaches to the tunneling problem is performed. The differences between the available improved formulae for tunneling near the top and the bottom of the barrier are investigated. Though the simple WKB method gives the right order of magnitude of the decay widths, a small number of parameters are often fitted. The need to perform the fitting procedure remaining consistently within the WKB framework is emphasized in the context of the fission model based calculations. Calculations for the decay widths of some recently found super heavy nuclei using microscopic alpha-nucleus potentials are presented to demonstrate the importance of a consistent WKB calculation. The half-lives are found to be sensitive to the density dependence of the nucleon-nucleon interaction and the implementation of the Bohr-Sommerfeld quantization condition inherent in the WKB approach.Comment: 18 pages, Late

    The WARPS survey - IV: The X-ray luminosity-temperature relation of high redshift galaxy clusters

    Get PDF
    We present a measurement of the cluster X-ray luminosity-temperature relation out to high redshift (z~0.8). Combined ROSAT PSPC spectra of 91 galaxy clusters detected in the Wide Angle ROSAT Pointed Survey (WARPS) are simultaneously fit in redshift and luminosity bins. The resulting temperature and luminosity measurements of these bins, which occupy a region of the high redshift L-T relation not previously sampled, are compared to existing measurements at low redshift in order to constrain the evolution of the L-T relation. We find a best fit to low redshift (z1 keV, to be L proportional to T^(3.15\pm0.06). Our data are consistent with no evolution in the normalisation of the L-T relation up to z~0.8. Combining our results with ASCA measurements taken from the literature, we find eta=0.19\pm0.38 (for Omega_0=1, with 1 sigma errors) where L_Bol is proportional to (1 + z)^eta T^3.15, or eta=0.60\pm0.38 for Omega_0=0.3. This lack of evolution is considered in terms of the entropy-driven evolution of clusters. Further implications for cosmological constraints are also discussed.Comment: 11 pages, 7 figures, accepted for publication in MNRA

    X-Ray Spectral Variability of PKS 2005-489 During the Spectacular November 1998 Flare

    Get PDF
    We report on monitoring of the BL Lac object PKS 2005-489 by the Rossi X-ray Timing Explorer (RXTE) in October-December 1998. During these months, the source underwent a spectacular flare; at its peak on November 10, its 2-10 keV flux was 3.33×1010 erg cm2 s13.33 \times 10^{-10} {\rm ~erg ~cm^{-2} ~s^{-1}}, over 30 times brighter than in quiescence. During the rising phase, the X-ray spectrum of PKS 2005-489 hardened considerably, reaching α=1.32 (Fννα)\alpha = 1.32~ (F_\nu \propto \nu^{-\alpha}) near maximum. During the declining phase, the X-ray spectrum steepened rapidly, reaching α=1.82\alpha = 1.82, then became somewhat harder towards the end of December (α1.6\alpha \sim 1.6). While such behavior has been seen before, the simplicity, magnitude and duration of this flare allowed us to study it in great detail. We argue that this flare was caused by either the injection of particles into the jet or {\it in situ} particle acceleration, and that the spectral steepening which followed the flare maximum was the result of synchrotron cooling. Contrary to other recently observed blazar flares (e.g., Mkn 501, 3C 279, PKS 2155-304), our results do not imply a major shift in the location of the synchrotron peak during this flare.Comment: ApJ Letters in press, 6 pages, 2 figures Corrected reference

    A Modified Synchrotron Model for Knots in the M87 Jet

    Full text link
    For explaining the broadband spectral shape of knots in the M87 jet from radio through optical to X-ray, we propose a modified synchrotron model that considers the integrated effect of particle injection from different acceleration sources in the thin acceleration region. This results in two break frequencies at two sides of which the spectral index of knots in the M87 jet changes. We discuss the possible implications of these results for the physical properties in the M87 jet. The observed flux of the knots in the M87 jet from radio to X-ray can be satisfactorily explained by the model, and the predicted spectra from ultraviolet to X-ray could be further tested by future observations. The model implies that the knots D, E, F, A, B, and C1 are unlikely to be the candidate for the TeV emission recently detected in M87.Comment: 12 pages, 1 figure, 2 tables, Accepted for publication in ApJ Letter

    A multi-zone model for simulating the high energy variability of TeV blazars

    Get PDF
    We present a time-dependent multi-zone code for simulating the variability of Synchrotron-Self Compton (SSC) sources. The code adopts a multi-zone pipe geometry for the emission region, appropriate for simulating emission from a standing or propagating shock in a collimated jet. Variations in the injection of relativistic electrons in the inlet propagate along the length of the pipe cooling radiatively. Our code for the first time takes into account the non-local, time-retarded nature of synchrotron self-Compton (SSC) losses that are thought to be dominant in TeV blazars. The observed synchrotron and SSC emission is followed self-consistently taking into account light travel time delays. At any given time, the emitting portion of the pipe depends on the frequency and the nature of the variation followed. Our simulation employs only one additional physical parameter relative to one-zone models, that of the pipe length and is computationally very efficient, using simplified expressions for the SSC processes. The code will be useful for observers modeling GLAST, TeV, and X-ray observations of SSC blazars.Comment: ApJ, accepte
    corecore