29,468 research outputs found
A star camera aspect system suitable for use in balloon experiments
A balloon-borne experiment containing a star camera aspect system was designed, built, and flown. This system was designed to provide offset corrections to the magnetometer and inclinometer readings used to control an azimuth and elevation pointed experiment. The camera is controlled by a microprocessor, including commendable exposure and noise rejection threshold, as well as formatting the data for telemetry to the ground. As a background program, the microprocessor runs the aspect program to analyze a fraction of the pictures taken so that aspect information and offset corrections are available to the experiment in near real time. The analysis consists of pattern recognition of the star field with a star catalog in ROM memory and a least squares calculation. The performance of this system in ground based tests is described. It is part of the NASA/GSFC High Energy Gamma-Ray Balloon Instrument (2)
A radial mode ultrasonic horn for the inactivation of <i>Escherichia coli</i> K12
Tuned cylindrical radial mode ultrasonic horns offer advantages over ultrasonic probes in the design of flow-through devices for bacterial inactivation. This study presents a comparison of the effectiveness of a radial horn and probe in the inactivation of Escherichia coli K12. The radial horn is designed using finite element analysis and the predicted modal parameters are validated using experimental modal analysis. A validated finite element model of the probe is also presented. Visual studies of the cavitation fields produced by the radial horn and probe are carried out using luminol and also backlighting to demonstrate the advantages of radial horns in producing a more focused cavitation field with widely dispersed streamers. Microbiological studies show that, for the same power density, better inactivation of E. coli K12 is achieved using the radial horn and, also, the radial horn offers greater achievable power density resulting in further improvements in bacterial inactivation. The radial horn is shown to be more effective than the probe device and offers opportunities to design in-line flow-through devices for processing applications
Wall slip and flow of concentrated hard-sphere colloidal suspensions
We present a comprehensive study of the slip and flow of concentrated
colloidal suspensions using cone-plate rheometry and simultaneous confocal
imaging. In the colloidal glass regime, for smooth, non-stick walls, the solid
nature of the suspension causes a transition in the rheology from
Herschel-Bulkley (HB) bulk flow behavior at large stress to a Bingham-like slip
behavior at low stress, which is suppressed for sufficient colloid-wall
attraction or colloid-scale wall roughness. Visualization shows how the
slip-shear transition depends on gap size and the boundary conditions at both
walls and that partial slip persist well above the yield stress. A
phenomenological model, incorporating the Bingham slip law and HB bulk flow,
fully accounts for the behavior. Microscopically, the Bingham law is related to
a thin (sub-colloidal) lubrication layer at the wall, giving rise to a
characteristic dependence of slip parameters on particle size and
concentration. We relate this to the suspension's osmotic pressure and yield
stress and also analyze the influence of van der Waals interaction. For the
largest concentrations, we observe non-uniform flow around the yield stress, in
line with recent work on bulk shear-banding of concentrated pastes. We also
describe residual slip in concentrated liquid suspensions, where the vanishing
yield stress causes coexistence of (weak) slip and bulk shear flow for all
measured rates
New light on the ‘Drummer of Tedworth’: conflicting narratives of witchcraft in Restoration England
This paper presents a definitive text of hitherto little-known early documents concerning ‘The Drummer of Tedworth’, a poltergeist case that occurred in 1662-3 and became famous not least due to its promotion by Joseph Glanvill in his demonological work, Saducismus Triumphatus. On the basis of these and other sources, it is shown how responses to the events at Tedworth evolved from anxious piety on the part of their victim, John Mompesson, to confident apologetic by Glanvill, before they were further affected by the emergence of articulate scepticism about the case
Electrophoretic Properties of Highly Charged Colloids: A Hybrid MD/LB Simulation Study
Using computer simulations, the electrophoretic motion of a positively
charged colloid (macroion) in an electrolyte solution is studied in the
framework of the primitive model. Hydrodynamic interactions are fully taken
into account by applying a hybrid simulation scheme, where the charged ions
(i.e. macroion and electrolyte), propagated via molecular dynamics (MD), are
coupled to a Lattice Boltzmann (LB) fluid. In a recent experiment it was shown
that, for multivalent salt ions, the mobility initially increases with
charge density , reaches a maximum and then decreases with further
increase of . The aim of the present work is to elucidate the behaviour
of at high values of . Even for the case of monovalent microions,
we find a decrease of with . A dynamic Stern layer is defined
that includes all the counterions that move with the macroion while subject to
an external electrical field. The number of counterions in the Stern layer,
, is a crucial parameter for the behavior of at high values of
. In this case, the mobility depends primarily on the ratio
(with the valency of the macroion). The previous contention that
the increase in the distortion of the electric double layer (EDL) with
increasing leads to the lowering of does not hold for high
. In fact, we show that the deformation of the EDL decreases with
increase of . The role of hydrodynamic interactions is inferred from
direct comparisons to Langevin simulations where the coupling to the LB fluid
is switched off. Moreover, systems with divalent counterions are considered. In
this case, at high values of the phenomenon of charge inversion is
found.Comment: accepted in J. Chem Phys., 10 pages, 9 figure
Mode-locked Bloch oscillations in a ring cavity
We present a new technique for stabilizing and monitoring Bloch oscillations
of ultracold atoms in an optical lattice under the action of a constant
external force. In the proposed scheme, the atoms also interact with a
unidirectionally pumped optical ring cavity whose one arm is collinear with the
optical lattice. For weak collective coupling, Bloch oscillations dominate over
the collective atomic recoil lasing instability and develop a synchronized
regime in which the atoms periodically exchange momentum with the cavity field.Comment: 7 pages, 5 figure
M–M Bond-Stretching Energy Landscapes for M_2(dimen)_(4)^(2+) (M = Rh, Ir; dimen = 1,8-Diisocyanomenthane) Complexes
Isomers of Ir_2(dimen)_(4)^(2+) (dimen = 1,8-diisocyanomenthane) exhibit different Ir–Ir bond distances in a 2:1 MTHF/EtCN solution (MTHF = 2-methyltetrahydrofuran). Variable-temperature absorption data suggest that the isomer with the shorter Ir–Ir distance is favored at room temperature [K = ~8; ΔH° = −0.8 kcal/mol; ΔS° = 1.44 cal mol^(–1) K^(–1)]. We report calculations that shed light on M_2(dimen)_(4)^(2+) (M = Rh, Ir) structural differences: (1) metal–metal interaction favors short distances; (2) ligand deformational-strain energy favors long distances; (3) out-of-plane (A_(2u)) distortion promotes twisting of the ligand backbone at short metal–metal separations. Calculated potential-energy surfaces reveal a double minimum for Ir_2(dimen)_(4)^(2+) (4.1 Å Ir–Ir with 0° twist angle and ~3.6 Å Ir–Ir with ±12° twist angle) but not for the rhodium analogue (4.5 Å Rh–Rh with no twisting). Because both the ligand strain and A_(2u) distortional energy are virtually identical for the two complexes, the strength of the metal–metal interaction is the determining factor. On the basis of the magnitude of this interaction, we obtain the following results: (1) a single-minimum (along the Ir–Ir coordinate), harmonic potential-energy surface for the triplet electronic excited state of Ir_2(dimen)_(4)^(2+) (R_(e,Ir–Ir) = 2.87 Å; F_(Ir–Ir) = 0.99 mdyn Å^(–1)); (2) a single-minimum, anharmonic surface for the ground state of Rh_2(dimen)_(4)^(2+) (R_(e,Rh–Rh) = 3.23 Å; F_(Rh–Rh) = 0.09 mdyn Å^(–1)); (3) a double-minimum (along the Ir–Ir coordinate) surface for the ground state of Ir_2(dimen)_(4)^(2+) (R_(e,Ir–Ir) = 3.23 Å; F_(Ir–Ir) = 0.16 mdyn Å^(–1))
Validity and practical utility of accelerometry for the measurement of in-hand physical activity in horses
Background:
Accelerometers are valid, practical and reliable tools for the measurement of habitual physical activity (PA). Quantification of PA in horses is desirable for use in research and clinical settings. The objective of this study was to evaluate a triaxial accelerometer for objective measurement of PA in the horse by assessment of their practical utility and validity.
Horses were recruited to establish both the optimal site of accelerometer attachment and questionnaire designed to explore owner acceptance. Validity and cut-off values were obtained by assessing PA at various gaits. Validation study- 20 horses wore the accelerometer while being filmed for 10 min each of rest, walking and trotting and 5 mins of canter work. Practical utility study- five horses wore accelerometers on polls and withers for 18 h; compliance and relative data losses were quantified.
Results:
Accelerometry output differed significantly between the four PA levels (P <0•001) for both wither and poll placement. For withers placement, ROC analyses found optimal sensitivity and specificity at a cut-off of <47 counts per minute (cpm) for rest (sensitivity 99.5 %, specificity 100 %), 967–2424 cpm for trotting (sensitivity 96.7 %, specificity 100 %) and ≥2425 cpm for cantering (sensitivity 96.0 %, specificity 97.0 %). Attachment at the poll resulted in optimal sensitivity and specificity at a cut-off of <707 counts per minute (cpm) for rest (sensitivity 97.5 %, specificity 99.6 %), 1546–2609 cpm for trotting (sensitivity 90.33 %, specificity 79.25 %) and ≥2610 cpm for cantering (sensitivity 100 %, specificity 100 %) In terms of practical utility, accelerometry was well tolerated and owner acceptance high.
Conclusion:
Accelerometry data correlated well with varying levels of in-hand equine activity. The use of accelerometers is a valid method for objective measurement of controlled PA in the horse
- …
