2,634 research outputs found
Extended γ‐ray emission in solar flares
During the solar flare events on 11 and 15 June 1991, COMPTEL measured extended emission in the neutron capture line for about 5 hours after the impulsive phase. The time profiles can be described by a double exponential decay with decay constants on the order of 10 min for the fast and 200 min for the slow component. Within the statistical uncertainty both flares show the same long‐term behaviour. The spectrum during the extended phase is significantly harder than during the impulsive phase and pions are not produced in significant numbers before the beginning of the extended emission. Our results with the measurements of others allow us to rule out long‐term trapping of particles in non‐turbulent loops to explain the extended emission of these two flares and our data favour models based on continued acceleration
Infrared spectra of WC10 planetary nebulae nuclei
The 5.2 to 8.0 micron spectra are presented for two planetary nebulae nuclei Hen1044 (He2-113) and CPD-56 8032. The unidentified infrared (UIR) emission bands at 6.2 microns, 6.9 microns, 7.7 microns are present in the spectra of Hen1044 and in CPD-56 8032, and the 8.6 micron band is present in the long wavelength shoulder of the 7.7 micron band in the spectrum of CPD-56 8032. The 8 to 13 micron spectra of these two stars by Aitken et. al. clearly show the presence of the 8.6 micron band in He2-113 while weakly resolving this feature in the spectra of CPD-56 8032. In their spectra the 11.3 micron band is also clearly detected in both objects. The 6.2 micron and 7.7 micron bands are characteristic of the infrared active C-C stretching modes in polycyclic aromatic hydrocarbons (PAHs); the 3.3 micron, 8.6 micron, and 11.3 micron bands are respectively assigned to the in-plane stretching mode, the in-plane bending mode, and the out-of-plane bending mode of the aromatic CH bond. The weak 6.9 micron emission feature is attributed to the UIR spectrum by Bregman et. al. The IRAS LRS spectra of He2-113 (IRAS 14562-5406) and CPD-56 8032 (IRAS 17047-5650) are presented. Cohen et. al. identify the broad plateau from 11.3 to 13.0 microns in the spectrum of He2-113 with increased hydrogenation of PAHs. This broad plateau is not seen in the LRS spectrum of CPD-56 8032. Also, He2-113 has greater infrared excess emission in the 17-22 micron region than does CPD-56 8032
Energetic proton spectra in the 11 June 1991 solar flare
The June 11, 1991 gamma-ray flare seen by the Compton Gamma-ray Observatory (CGRO) displays several features that make it a dynamic and rich event. It is a member of a class of long duration gamma-ray events with both 2.223 MeV and greater than 8 MeV emission for hours after the impulsive phase. It also contains an inter-phase between the impulsive and extended phases that presents a challenge to the standard gamma-ray line (GRL) flare picture. This phase has strong 2.223 MeV emission and relatively weak 4.44 MeV emission indicative of a very hard parent proton spectrum. However, this would indicate emission greater than 8 MeV, which is absent from this period. We present the application of new spectroscopy techniques to this phase of the flare in order to present a reasonable explanation for this seemly inconsistent picture
COMPTEL’s solar flare catalog
COMPTEL, the imaging gamma‐ray telescope, capable of detecting gamma rays in the range of 0.1–30 MeV, is one of four instruments aboard NASA’s Compton Gamma‐Ray Observatory. The Comptel burst detectors (single Defector Mode) have a field of view of ∼2.5 π sr. These detectors of COMPTEL permit measurements of energy spectra and time histories of solar flare gamma‐ray emission. A search through the Single Detector Mode’s data is being conducted. We summarize the preliminary results of this search
Airborne observations of the infrared emission bands
Earlier airborne studies of the infrared bands between 5 and 8 microns have now been extended to a sample of southern sources selected from the IRAS Low Resolution Spectra (LRS) atlas. The correlation between the strongest bands at 6.2 and 7.7 microns is now based on a total sample of 40 sources and is very strong. A new emission band at 5.2 microns, previously predicted for polycyclic aromatic hydrocarbons (PAHs), is recognized in 27 sources; it too correlates with the dominant 7.7 micron band, showing that the 5.2 micron feature also belongs to the generic spectrum of PAH features at 3.3, 5.6, 6.2, 6.2, 7.7, 8.7, 11.3, and 12.7 microns. Sufficient sources are had now to define the relative strengths of most of these bands in three separate nebular environments: planetaries, H II regions, and reflection nebulae. Significant variations are detected in the generic spectra of PAHs in these different environments which are echoed by variations in the exact wavelength of the strong 7.7 micron peak. The earlier suggestion that, in planetaries, the fraction of total emission observed by IRAS that is carried by the PAH emissions is correlated with nebular gas-phase C/O ratio is supported by the addition of newly-observed southern planetaries, including the unusually carbon-rich (WC10) nebular nuclei. These (WC10) nuclei also exhibit a strong plateau of emission linking the 6.2 and 7.7 micron features
Bayesian multiscale deconvolution applied to gamma-ray spectroscopy
A common task in gamma-ray astronomy is to extract spectral information, such as model constraints and incident photon spectrum estimates, given the measured energy deposited in a detector and the detector response. This is the classic problem of spectral “deconvolution” or spectral inversion. The methods of forward folding (i.e., parameter fitting) and maximum entropy “deconvolution” (i.e., estimating independent input photon rates for each individual energy bin) have been used successfully for gamma-ray solar flares (e.g., Rank, 1997; Share and Murphy, 1995). These methods have worked well under certain conditions but there are situations were they don’t apply. These are: 1) when no reasonable model (e.g., fewer parameters than data bins) is yet known, for forward folding; 2) when one expects a mixture of broad and narrow features (e.g., solar flares), for the maximum entropy method; and 3) low count rates and low signal-to-noise, for both. Low count rates are a problem because these methods (as they have been implemented) assume Gaussian statistics but Poisson are applicable. Background subtraction techniques often lead to negative count rates. For Poisson data the Maximum Likelihood Estimator (MLE) with a Poisson likelihood is appropriate. Without a regularization term, trying to estimate the “true” individual input photon rates per bin can be an ill-posed problem, even without including both broad and narrow features in the spectrum (i.e., amultiscale approach). One way to implement this regularization is through the use of a suitable Bayesian prior. Nowak and Kolaczyk (1999) have developed a fast, robust, technique using a Bayesian multiscale framework that addresses these problems with added algorithmic advantages. We outline this new approach and demonstrate its use with time resolved solar flare gamma-ray spectroscopy
COMPTEL gamma ray and neutron measurements of solar flares
COMPTEL on the Compton Gamma Ray Observatory has measured the flux of x‐rays and neutrons from several solar flares. These data have also been used to image the Sun in both forms of radiation. Unusually intense flares occurred during June 1991 yielding data sets that offer some new insight into of how energetic protons and electrons are accelerated and behave in the solar environment. We summarize here some of the essential features in the solar flare data as obtained by COMPTEL during June 1991
X- and gamma-ray observations of the 15 November 1991 Solar Flare
This work expands the current understanding of the 15 November 1991 Solar Flare. The flare was a well observed event in radio to gamma-rays and is the first flare to be extensively studied with the benefit of detailed soft and hard X-ray images. In this work, we add data from all four instruments on the Compton Gamma Ray Observatory. Using these data we determined that the accelerated electron spectrum above 170 keV is best fit with a power law with a spectral index of −4.6, while the accelerated proton spectrum above 0.6 MeV is fit with a power law of spectral index −4.5. From this we computed lower limits for the energy content of these particles of∼1023 ergs (electrons) and ∼1027 ergs (ions above 0.6 MeV). These particles do not have enough energy to produce the white-light emission observed from this event. We computed a time constant of 26+20−15 s for the 2.223 MeV neutron capture line, which is consistent at the 2σ level with the lowest values of ∼70 s found for other flares. The mechanism for this short capture time may be better understood after analyses of high energy EGRET data that show potential evidence for pion emission near ∼100 MeV
COMPTEL observations of gamma‐ray flares in October 1991
The COMPTEL experiment on GRO images 0.75–30 MeV celestial gamma‐radiation that falls within its 1 steradian field of view. During observation 12 (primary target Cen A) in October 1991 the sun had been in the fov and several solar flares associated with the active region 6891 had been observed. Time profile and energy spectra had been produced, using COMPTEL’s primary mode of operation (the telescope mode). Additionally the number of counts received in the D2‐single burst detector (the secondary mode of operation) are given. We summarize the preliminary results on all of these flares
Energetic proton spectra in the 11 June 1991 solar flare
We have studied a subset of the 11 June 1991 solar flare γ-ray data that we believe arise from soft proton or ion spectra. Using data from the COMPTEL instrument on the Compton Observatory we discuss the gamma-ray intensities at 2.223 MeV, 4–7 MeV, and 8–30 MeV in terms of the parent proton spectrum responsible for the emission
- …
