4,667 research outputs found

    Petrology and tectonic development of supracrustal sequence of Kerala Khondalite Belt, Southern India

    Get PDF
    The granulite terrain of southern India, of which the Kerala Khondalite belt (KKB) is a part, is unique in exposing crustal sections with arrested charnockite growth in different stages of transformation and in varied lithological association. The KKB with rocks of surficial origin and incipient charnockite development, poses several problems relating to the tectonics of burial of vast area and mechanisms involved in expelling initial H2O (causes of dryness) for granulite facies metamorphism. It is possible to infer the following sequence of events based on the field and laboratory studies: (1) derivation of protoliths of KKB from granitic uplands and deposition in fault bounded basin (cratonic rift); (2) subhorizontal deep burial of sediments; (3) intense deformation of infra and supracrustal rocks; (4) early granulite facies metamorphism predating F sub 2 - loss of primary structure in sediments and formation of charnockites from amphibole bearing gneisses and khondalites from pelites; (5) migmatisation and deformation of metasediments and gneisses; (6) second event of charnockite formation probably aided by internal CO2 build-up; and (7) isothermal uplift, entrapment of late CO2 and mixed CO2-H2O fluids, formation of second generation cordierites and cordierite symplectites

    Interplay of Superconductivity and Spin-Dependent Disorder

    Full text link
    The finite temperature phase diagram for the 2D attractive fermion Hubbard model with spin-dependent disorder is considered within Bogoliubov-de Gennes mean field theory. Three types of disorder are studied. In the first, only one species is coupled to a random site energy; in the second, the two species both move in random site energy landscapes which are of the same amplitude, but different realizations; and finally, in the third, the disorder is in the hopping rather than the site energy. For all three cases we find that, unlike the case of spin-symmetric randomness, where the energy gap and average order parameter do not vanish as the disorder strength increases, a critical disorder strength exists separating distinct phases. In fact, the energy gap and the average order parameter vanish at distinct transitions, VcgapV_{c}^{\rm gap} and VcopV_{c}^{\rm op}, allowing for a gapless superconducting (gSC) phase. The gSC phase becomes smaller with increasing temperature, until it vanishes at a temperature TT^{\ast}.Comment: 9 pages, 7 figure
    corecore