6,959 research outputs found
STRATAQ: A three-dimensional Chemical Transport Model of the stratosphere
International audienceA three-dimensional (3-D) Chemical Transport Model (CTM) of the stratosphere has been developed and used for a test study of the evolution of chemical species in the arctic lower stratosphere during winter 1996/97. This particular winter has been chosen for testing the model's capabilities for its remarkable dynamical situation (very cold and strong polar vortex) along with the availability of sparse chlorine, HNO3 and O3 data, showing also very low O3 values in late March/April. Due to those unusual features, the winter 1996/97 can be considered an excellent example of the impact of both dynamics and heterogeneous reactions on the chemistry of the stratosphere. Model integration has been performed from January to March 1997 and the resulting long-lived and short-lived tracer fields compared with available measurements. The model includes a detailed gas phase chemical scheme and a parameterization of the heterogeneous reactions occurring on liquid aerosol and polar stratospheric cloud (PSC) surfaces. The transport is calculated using a semi-lagrangian flux scheme, forced by meteorological analyses. In such form, the STRATAQ CTM model is suitable for short-term integrations to study transport and chemical evolution related to "real" meteorological situations. Model simulation during the chosen winter shows intense PSC formation, with noticeable local HNO3 capture by PSCs, and the activation of vortex air leading to chlorine production and subsequent O3 destruction. The resulting model fields show generally good agreement with satellite data (MLS and TOMS), although the available observations, due to their limited number and time/space sparse nature, are not enough to effectively constraint the model. In particular, the model seems to perform well in reproducing the rapid processing of air inside the polar vortex on PSC converting reservoir species in active chlorine. In addition, it satisfactorily reproduces the morphology of the continuous O3 decline as shown by the satellite during the investigated period, with a tendency, however, to underestimate the total column values inside the polar vortex during late winter. As possible causes of this model/observation difference we suggest an incorrect estimation of the vertical transport and of the tropospheric contribution
Baseline LHC machine parameters and configuration of the 2015 proton run
This paper shows the baseline LHC machine parameters for the 2015 start-up.
Many systems have been upgraded during LS1 and in 2015 the LHC will operate at
a higher energy than before and with a tighter filling scheme. Therefore, the
2015 commissioning phase risks to be less smooth than in 2012. The proposed
starting configuration puts the focus on feasibility rather than peak
performance and includes margins for operational uncertainties. Instead, once
beam experience and a better machine knowledge has been obtained, a push in
and performance can be envisaged. In this paper, the focus is on
collimation settings and reach in ---other parameters are covered in
greater depth by other papers in these proceedings.Comment: submitted for publication in a CERN yellow report (Proceedings of the
LHC Performance Workshop - Chamonix 2014
Measurements of the effect of collisions on transverse beam halo diffusion in the Tevatron and in the LHC
Beam-beam forces and collision optics can strongly affect beam lifetime,
dynamic aperture, and halo formation in particle colliders. Extensive
analytical and numerical simulations are carried out in the design and
operational stage of a machine to quantify these effects, but experimental data
is scarce. The technique of small-step collimator scans was applied to the
Fermilab Tevatron collider and to the CERN Large Hadron Collider to study the
effect of collisions on transverse beam halo dynamics. We describe the
technique and present a summary of the first results on the dependence of the
halo diffusion coefficient on betatron amplitude in the Tevatron and in the
LHC.Comment: 4 pages, 2 figures. Submitted to the Proceedings of the ICFA
Mini-Workshop on Beam-beam Effects in Hadron Colliders (BB2013), Geneva,
Switzerland, 18-22 March 201
Assimilation of stratospheric ozone in the chemical transport model STRATAQ
International audienceWe describe a sequential assimilation approach useful for assimilating tracer measurements into a three-dimensional chemical transport model (CTM) of the stratosphere. The numerical code, developed largely according to Kha00, uses parameterizations and simplifications allowing assimilation of sparse observations and the simultaneous evaluation of analysis errors, with reasonable computational requirements. Assimilation parameters are set by using ?2 and OmF (Observation minus Forecast) statistics. The CTM used here is a high resolution three-dimensional model. It includes a detailed chemical package and is driven by UKMO (United Kingdom Meteorological Office) analyses. We illustrate the method using assimilation of Upper Atmosphere Research Satellite/Microwave Limb Sounder (UARS/MLS) ozone observations for three weeks during the 1996 antarctic spring. The comparison of results from the simulations with TOMS (Total Ozone Mapping Spectrometer) measurements shows improved total ozone fields due to assimilation of MLS observations. Moreover, the assimilation gives indications on a possible model weakness in reproducing polar ozone values during springtime
Analysis of water vapor LIDAR measurements during the MAP campaign: evidence of sub-structures of stratospheric intrusions
This paper presents two case studies of transport of dry air in the free troposphere measured by a ground based Raman LIDAR in the Northern-Italy, during the Mesoscale Alpine Programme (MAP). Two observations characterized by the presence of anomalously dry layers, below 6 km height, were analyzed using Lagrangian techniques. These events are related to upper-tropospheric, high Potential Vorticity (PV) streamers crossing the Alpine region. These are interpreted as small-scale features of stratospheric intrusions associated with the PV ridge during its phase of dissipation. One of the measurements also shows the presence of two distinct dehydrated structures associated with the same event. The water vapor concentration also suggests dilution processes of dry stratospheric air in the troposphere. Lagrangian simulations allowed to successfully reproduce the observed water vapor distribution and the air parcel histories confirmed the stratospheric origin of the dry layers
Beam halo dynamics and control with hollow electron beams
Experimental measurements of beam halo diffusion dynamics with collimator
scans are reviewed. The concept of halo control with a hollow electron beam
collimator, its demonstration at the Tevatron, and its possible applications at
the LHC are discussed.Comment: 5 pages, 4 figures, in Proceedings of the 52nd ICFA Advanced Beam
Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams
(HB2012), Beijing, China, 17-21 September 201
Studies on combined momentum and betatron cleaning in the LHC
Collimation and halo cleaning for the LHC beams are performed separately for betatron and momentum losses, requiring two dedicated insertions for collimation. Betatron cleaning is performed in IR7 while momentum cleaning is performed in IR3. A study has been performed to evaluate the performance reach for a combined betatron and momentum cleaning system in IR3. The results are presented
Avaliação do raio de ação de armadilha Delta iscada com o feromônio sexual sintético de Grapholita molesta (Lepidoptera, Tortricidae), em pomares de pessegueiro.
Neste trabalho foi determinado o raio de ação do atrativo sexual de G. molesta (Iscalure Grapholita® ISCA Tecnologias) em armadilhas Delta, em pomares de pessegueiro
- …
