358 research outputs found

    Gravitational Lensing of the X-Ray Background by Clusters of Galaxies

    Get PDF
    Gravitational lensing by clusters of galaxies affects the cosmic X-ray background (XRB) by altering the observed density and flux distribution of background X-ray sources. At faint detection flux thresholds, the resolved X-ray sources appear brighter and diluted, while the unresolved component of the XRB appears dimmer and more anisotropic, due to lensing. The diffuse X-ray intensity in the outer halos of clusters might be lower than the sky-averaged XRB, after the subtraction of resolved sources. Detection of the lensing signal with a wide-field X-ray telescope could probe the mass distribution of a cluster out to its virialization boundary. In particular, we show that the lensing signature imprinted on the resolved component of the XRB by the cluster A1689, should be difficult but possible to detect out to 8' at the 2-4 sigma level, after 10^6 seconds of observation with the forthcoming AXAF satellite. The lensing signal is fairly insensitive to the lens redshift in the range 0.1<z<0.6. The amplitude of the lensing signal is however sensitive to the faint end slope of the number-flux relation for unresolved X-ray sources, and can thus help constrain models of the XRB. A search for X-ray arcs or arclets could identify the fraction of all faint sources which originate from extended emission of distant galaxies. The probability for a 3 sigma detection of an arclet which is stretched by a factor of about 3 after a 10^6 seconds observation of A1689 with AXAF, is roughly comparable to the fraction of all background X-ray sources that have an intrinsic size of order 1''.Comment: 41 LaTeX pages, 11 postscript figures, 1 table, in AASTeX v4.0 format. To appear in ApJ, April 1, 1997, Vol. 47

    A fast empirical method for galaxy shape measurements in weak lensing surveys

    Full text link
    We describe a simple and fast method to correct ellipticity measurements of galaxies from the distortion by the instrumental and atmospheric point spread function (PSF), in view of weak lensing shear measurements. The method performs a classification of galaxies and associated PSFs according to measured shape parameters, and corrects the measured galaxy ellipticites by querying a large lookup table (LUT), built by supervised learning. We have applied this new method to the GREAT10 image analysis challenge, and present in this paper a refined solution that obtains the competitive quality factor of Q = 104, without any shear power spectrum denoising or training. Of particular interest is the efficiency of the method, with a processing time below 3 ms per galaxy on an ordinary CPU.Comment: 8 pages, 6 figures. Metric values updated according to the final GREAT10 analysis software (Kitching et al. 2012, MNRAS 423, 3163-3208), no qualitative changes. Associated code available at http://lastro.epfl.ch/megalu

    Generating non-Gaussian maps with a given power spectrum and bispectrum

    Get PDF
    We propose two methods for generating non-Gaussian maps with fixed power spectrum and bispectrum. The first makes use of a recently proposed rigorous, non-perturbative, Bayesian framework for generating non-Gaussian distributions. The second uses a simple superposition of Gaussian distributions. The former is best suited for generating mildly non-Gaussian maps, and we discuss in detail the limitations of this method. The latter is better suited for the opposite situation, i.e. generating strongly non-Gaussian maps. The ensembles produced are isotropic and the power spectrum can be jointly fixed; however we cannot set to zero all other higher order cumulants (an unavoidable mathematical obstruction). We briefly quantify the leakage into higher order moments present in our method. We finally present an implementation of our code within the HEALPIX packageComment: 22 pages submitted to PRD, astro-ph version only includes low resolution map

    Rejuvenation in the Random Energy Model

    Full text link
    We show that the Random Energy Model has interesting rejuvenation properties in its frozen phase. Different `susceptibilities' to temperature changes, for the free-energy and for other (`magnetic') observables, can be computed exactly. These susceptibilities diverge at the transition temperature, as (1-T/T_c)^-3 for the free-energy.Comment: 9 pages, 1 eps figur

    Numerical Study on Aging Dynamics in the 3D Ising Spin-Glass Model. II. Quasi-Equilibrium Regime of Spin Auto-Correlation Function

    Full text link
    Using Monte Carlo simulations, we have studied isothermal aging of three-dimensional Ising spin-glass model focusing on quasi-equilibrium behavior of the spin auto-correlation function. Weak violation of the time translational invariance in the quasi-equilibrium regime is analyzed in terms of {\it effective stiffness} for droplet excitations in the presence of domain walls. Within the range of computational time window, we have confirmed that the effective stiffness follows the expected scaling behavior with respect to the characteristic length scales associated with droplet excitations and domain walls, whose growth law has been extracted from our simulated data. Implication of the results are discussed in relation to experimental works on ac susceptibilities.Comment: 18 pages, 6 figure

    Dark energy constraints from cosmic shear power spectra: impact of intrinsic alignments on photometric redshift requirements

    Full text link
    Cosmic shear constrains cosmology by exploiting the apparent alignments of pairs of galaxies due to gravitational lensing by intervening mass clumps. However galaxies may become (intrinsically) aligned with each other, and with nearby mass clumps, during their formation. This effect needs to be disentangled from the cosmic shear signal to place constraints on cosmology. We use the linear intrinsic alignment model as a base and compare it to an alternative model and data. If intrinsic alignments are ignored then the dark energy equation of state is biased by ~50 per cent. We examine how the number of tomographic redshift bins affects uncertainties on cosmological parameters and find that when intrinsic alignments are included two or more times as many bins are required to obtain 80 per cent of the available information. We investigate how the degradation in the dark energy figure of merit depends on the photometric redshift scatter. Previous studies have shown that lensing does not place stringent requirements on the photometric redshift uncertainty, so long as the uncertainty is well known. However, if intrinsic alignments are included the requirements become a factor of three tighter. These results are quite insensitive to the fraction of catastrophic outliers, assuming that this fraction is well known. We show the effect of uncertainties in photometric redshift bias and scatter. Finally we quantify how priors on the intrinsic alignment model would improve dark energy constraints.Comment: 14 pages and 9 figures. Replaced with final version accepted in "Gravitational Lensing" Focus Issue of the New Journal of Physics at http://www.iop.org/EJ/abstract/1367-2630/9/12/E0

    Static chaos and scaling behaviour in the spin-glass phase

    Full text link
    We discuss the problem of static chaos in spin glasses. In the case of magnetic field perturbations, we propose a scaling theory for the spin-glass phase. Using the mean-field approach we argue that some pure states are suppressed by the magnetic field and their free energy cost is determined by the finite-temperature fixed point exponents. In this framework, numerical results suggest that mean-field chaos exponents are probably exact in finite dimensions. If we use the droplet approach, numerical results suggest that the zero-temperature fixed point exponent θ\theta is very close to d32\frac{d-3}{2}. In both approaches d=3d=3 is the lower critical dimension in agreement with recent numerical simulations.Comment: 28 pages + 6 figures, LateX, figures uuencoded at the end of fil

    High precision spectra at large redshift for dynamical DE cosmologies

    Full text link
    The next generation mass probes will investigate DE nature by measuring non-linear power spectra at various z, and comparing them with high precision simulations. Producing a complete set of them, taking into account baryon physics and for any DE state equation w(z), would really be numerically expensive. Regularities reducing such duty are essential. This paper presents further n-body tests of a relation we found, linking models with DE state parameter w(z) to const.-w models, and also tests the relation in hydro simulations.Comment: PASCOS 2010, the 16th International Symposium on Particles, Strings and Cosmology, Valencia (Spain), July 19th - 23rd, 201

    Late time cosmic acceleration from vacuum Brans-Dicke theory in 5D

    Full text link
    We show that the scalar-vacuum Brans-Dicke equations in 5D are equivalent to Brans-Dicke theory in 4D with a self interacting potential and an effective matter field. The cosmological implication, in the context of FRW models, is that the observed accelerated expansion of the universe comes naturally from the condition that the scalar field is not a ghost, i.e., ω>3/2\omega > - 3/2. We find an effective matter-dominated 4D universe which shows accelerated expansion if 3/2<ω<1- 3/2 < \omega < - 1. We study the question of whether accelerated expansion can be made compatible with large values of ω\omega, within the framework of a 5D scalar-vacuum Brans-Dicke theory with variable, instead of constant, parameter ω\omega. In this framework, and based on a general class of solutions of the field equations, we demonstrate that accelerated expansion is incompatible with large values of ω\omega.Comment: In V2 the summary section is expanded. To be published in Classical and Quantum Gravity
    corecore