926 research outputs found

    Plane flame furnace combustion tests on JPL desulfurized coal

    Get PDF
    The combustion characteristics of three raw bituminous (PSOC-282 and 276) and subbituminous (PSOC-230) coals, the raw coals partially desulfurized (ca -60%) by JPL chlorinolysis, and the chlorinated coals more completely desulfurized (ca -75%) by JPL hydrodesulfurization were determined. The extent to which the combustion characteristics of the untreated coals were altered upon JPL sulfur removal was examined. Combustion conditions typical of utility boilers were simulated in the plane flame furnace. Upon decreasing the parent coal voltaile matter generically by 80% and the sulfur by 75% via the JPL desulfurization process, ignition time was delayed 70 fold, burning velocity was retarded 1.5 fold, and burnout time was prolonged 1.4 fold. Total flame residence time increased 2.3 fold. The JPL desulfurization process appears to show significant promise for producing technologically combustible and clean burning (low SO3) fuels

    Quantum disordered insulating phase in the frustrated cubic-lattice Hubbard model

    Get PDF
    In the quest for quantum spin liquids in three spatial dimensions (3D), we study the half-filled Hubbard model on the simple cubic lattice with hopping processes up to third neighbors. Employing the variational cluster approach (VCA), we determine the zero-temperature phase diagram: In addition to a paramagnetic metal at small interaction strength UU and various antiferromagnetic insulators at large UU, we find an intermediate-UU antiferromagnetic metal. Most interestingly, we also identify a non-magnetic insulating region, extending from intermediate to strong UU. Using VCA results in the large-UU limit, we establish the phase diagram of the corresponding J1J_1-J2J_2-J3J_3 Heisenberg model. This is qualitatively confirmed - including the non-magnetic region - using spin-wave theory. Further analysis reveals a striking similarity to the behavior of the J1J_1-J2J_2 square-lattice Heisenberg model, suggesting that the non-magnetic region hosts a 3D spin-liquid phase.Comment: 5 pages, 4 figures; final version incl. discussion about material

    Thermal Conductivity, Thermopower, and Figure of Merit of La_{1-x}Sr_xCoO_3

    Full text link
    We present a study of the thermal conductivity k and the thermopower S of single crystals of La_{1-x}Sr_xCoO_3 with 0<= x <= 0.3. For all Sr concentrations La_{1-x}Sr_xCoO_3 has rather low k values, whereas S strongly changes as a function of x. We discuss the influence of the temperature- and the doping-induced spin-state transitions of the Co ions on both, S and k. From S, k, and the electrical resistivity rho we derive the thermoelectric figure of merit Z=S^2/(k*rho). For intermediate Sr concentrations we find notably large values of Z indicating that Co-based materials could be promising candidates for thermoelectric cooling.Comment: 7 pages, 5 figures included, submitted to Phys. Rev.

    Crystallographically oriented magnetic ZnFe2O4 nanoparticles synthesized by Fe implantation into ZnO

    Full text link
    In this paper, a correlation between structural and magnetic properties of Fe implanted ZnO is presented. High fluence Fe^+ implantation into ZnO leads to the formation of superparamagnetic alpha-Fe nanoparticles. High vacuum annealing at 823 K results in the growth of alpha-Fe particles, but the annealing at 1073 K oxidized the majority of the Fe nanoparticles. After a long term annealing at 1073 K, crystallographically oriented ZnFe2O4 nanoparticles were formed inside ZnO with the orientation relationship of ZnFe2O4(111)[110]//ZnO(0001)[1120]. These ZnFe2O4 nanoparticles show a hysteretic behavior upon magnetization reversal at 5 K.Comment: 21 pages, 7 figures, accepted by J. Phys. D: Appl. Phy

    Monitoring Entanglement Evolution and Collective Quantum Dynamics

    Get PDF
    We generalize a recently developed scheme for monitoring coherent quantum dynamics with good time-resolution and low backaction [Reuther et al., Phys. Rev. Lett. 102, 033602 (2009)] to the case of more complex quantum dynamics of one or several qubits. The underlying idea is to measure with lock-in techniques the response of the quantum system to a high-frequency ac field. We demonstrate that this scheme also allows one to observe quantum dynamics with many frequency scales, such as that of a qubit undergoing Landau-Zener transitions. Moreover, we propose how to measure the entanglement between two qubits as well as the collective dynamics of qubit arrays.Comment: 11 pages, 5 figure

    Physical realization of a quantum spin liquid based on a novel frustration mechanism

    Get PDF
    Unlike conventional magnets where the magnetic moments are partially or completely static in the ground state, in a quantum spin liquid they remain in collective motion down to the lowest temperatures. The importance of this state is that it is coherent and highly entangled without breaking local symmetries. Such phenomena is usually sought in simple lattices where antiferromagnetic interactions and/or anisotropies that favor specific alignments of the magnetic moments are "frustrated" by lattice geometries incompatible with such order e.g. triangular structures. Despite an extensive search among such compounds, experimental realizations remain very few. Here we describe the investigation of a novel, unexplored magnetic system consisting of strong ferromagnetic and weaker antiferromagnetic isotropic interactions as realized by the compound Ca10_{10}Cr7_7O28_{28}. Despite its exotic structure we show both experimentally and theoretically that it displays all the features expected of a quantum spin liquid including coherent spin dynamics in the ground state and the complete absence of static magnetism.Comment: Modified version accepted in Nature Physic

    Discrete exterior calculus (DEC) for the surface Navier-Stokes equation

    Full text link
    We consider a numerical approach for the incompressible surface Navier-Stokes equation. The approach is based on the covariant form and uses discrete exterior calculus (DEC) in space and a semi-implicit discretization in time. The discretization is described in detail and related to finite difference schemes on staggered grids in flat space for which we demonstrate second order convergence. We compare computational results with a vorticity-stream function approach for surfaces with genus 0 and demonstrate the interplay between topology, geometry and flow properties. Our discretization also allows to handle harmonic vector fields, which we demonstrate on a torus.Comment: 21 pages, 9 figure

    Ground-state properties of the spin-1/2 antiferromagnetic Heisenberg model on the triangular lattice: A variational study based on entangled-plaquette states

    Full text link
    We study, on the basis of the general entangled-plaquette variational ansatz, the ground-state properties of the spin-1/2 antiferromagnetic Heisenberg model on the triangular lattice. Our numerical estimates are in good agreement with available exact results and comparable, for large system sizes, to those computed via the best alternative numerical approaches, or by means of variational schemes based on specific (i.e., incorporating problem dependent terms) trial wave functions. The extrapolation to the thermodynamic limit of our results for lattices comprising up to N=324 spins yields an upper bound of the ground-state energy per site (in units of the exchange coupling) of 0.5458(2)-0.5458(2) [0.4074(1)-0.4074(1) for the XX model], while the estimated infinite-lattice order parameter is 0.3178(5)0.3178(5) (i.e., approximately 64% of the classical value).Comment: 8 pages, 3 tables, 2 figure

    Fe-implanted ZnO: Magnetic precipitates versus dilution

    Full text link
    Nowadays ferromagnetism is often found in potential diluted magnetic semiconductor systems. However, many authors argue that the observed ferromagnetism stems from ferromagnetic precipitates or spinodal decomposition rather than from carrier mediated magnetic impurities, as required for a diluted magnetic semiconductor. In the present paper we answer this question for Fe-implanted ZnO single crystals comprehensively. Different implantation fluences and temperatures and post-implantation annealing temperatures have been chosen in order to evaluate the structural and magnetic properties over a wide range of parameters. Three different regimes with respect to the Fe concentration and the process temperature are found: 1) Disperse Fe2+^{2+} and Fe3+^{3+} at low Fe concentrations and low processing temperatures, 2) FeZn2_2O4_4 at very high processing temperatures and 3) an intermediate regime with a co-existence of metallic Fe (Fe0^0) and ionic Fe (Fe2+^{2+} and Fe3+^{3+}). Ferromagnetism is only observed in the latter two cases, where inverted ZnFe2_2O4_4 and α\alpha-Fe nanocrystals are the origin of the observed ferromagnetic behavior, respectively. The ionic Fe in the last case could contribute to a carrier mediated coupling. However, their separation is too large to couple ferromagnetically due to the lack of p-type carrier. For comparison investigations of Fe-implanted epitaxial ZnO thin films are presented.Comment: 14 pages, 17 figure
    corecore