926 research outputs found
Plane flame furnace combustion tests on JPL desulfurized coal
The combustion characteristics of three raw bituminous (PSOC-282 and 276) and subbituminous (PSOC-230) coals, the raw coals partially desulfurized (ca -60%) by JPL chlorinolysis, and the chlorinated coals more completely desulfurized (ca -75%) by JPL hydrodesulfurization were determined. The extent to which the combustion characteristics of the untreated coals were altered upon JPL sulfur removal was examined. Combustion conditions typical of utility boilers were simulated in the plane flame furnace. Upon decreasing the parent coal voltaile matter generically by 80% and the sulfur by 75% via the JPL desulfurization process, ignition time was delayed 70 fold, burning velocity was retarded 1.5 fold, and burnout time was prolonged 1.4 fold. Total flame residence time increased 2.3 fold. The JPL desulfurization process appears to show significant promise for producing technologically combustible and clean burning (low SO3) fuels
Quantum disordered insulating phase in the frustrated cubic-lattice Hubbard model
In the quest for quantum spin liquids in three spatial dimensions (3D), we
study the half-filled Hubbard model on the simple cubic lattice with hopping
processes up to third neighbors. Employing the variational cluster approach
(VCA), we determine the zero-temperature phase diagram: In addition to a
paramagnetic metal at small interaction strength and various
antiferromagnetic insulators at large , we find an intermediate-
antiferromagnetic metal. Most interestingly, we also identify a non-magnetic
insulating region, extending from intermediate to strong . Using VCA results
in the large- limit, we establish the phase diagram of the corresponding
-- Heisenberg model. This is qualitatively confirmed - including
the non-magnetic region - using spin-wave theory. Further analysis reveals a
striking similarity to the behavior of the - square-lattice
Heisenberg model, suggesting that the non-magnetic region hosts a 3D
spin-liquid phase.Comment: 5 pages, 4 figures; final version incl. discussion about material
Thermal Conductivity, Thermopower, and Figure of Merit of La_{1-x}Sr_xCoO_3
We present a study of the thermal conductivity k and the thermopower S of
single crystals of La_{1-x}Sr_xCoO_3 with 0<= x <= 0.3. For all Sr
concentrations La_{1-x}Sr_xCoO_3 has rather low k values, whereas S strongly
changes as a function of x. We discuss the influence of the temperature- and
the doping-induced spin-state transitions of the Co ions on both, S and k. From
S, k, and the electrical resistivity rho we derive the thermoelectric figure of
merit Z=S^2/(k*rho). For intermediate Sr concentrations we find notably large
values of Z indicating that Co-based materials could be promising candidates
for thermoelectric cooling.Comment: 7 pages, 5 figures included, submitted to Phys. Rev.
Crystallographically oriented magnetic ZnFe2O4 nanoparticles synthesized by Fe implantation into ZnO
In this paper, a correlation between structural and magnetic properties of Fe
implanted ZnO is presented. High fluence Fe^+ implantation into ZnO leads to
the formation of superparamagnetic alpha-Fe nanoparticles. High vacuum
annealing at 823 K results in the growth of alpha-Fe particles, but the
annealing at 1073 K oxidized the majority of the Fe nanoparticles. After a long
term annealing at 1073 K, crystallographically oriented ZnFe2O4 nanoparticles
were formed inside ZnO with the orientation relationship of
ZnFe2O4(111)[110]//ZnO(0001)[1120]. These ZnFe2O4 nanoparticles show a
hysteretic behavior upon magnetization reversal at 5 K.Comment: 21 pages, 7 figures, accepted by J. Phys. D: Appl. Phy
Monitoring Entanglement Evolution and Collective Quantum Dynamics
We generalize a recently developed scheme for monitoring coherent quantum
dynamics with good time-resolution and low backaction [Reuther et al., Phys.
Rev. Lett. 102, 033602 (2009)] to the case of more complex quantum dynamics of
one or several qubits. The underlying idea is to measure with lock-in
techniques the response of the quantum system to a high-frequency ac field. We
demonstrate that this scheme also allows one to observe quantum dynamics with
many frequency scales, such as that of a qubit undergoing Landau-Zener
transitions. Moreover, we propose how to measure the entanglement between two
qubits as well as the collective dynamics of qubit arrays.Comment: 11 pages, 5 figure
Physical realization of a quantum spin liquid based on a novel frustration mechanism
Unlike conventional magnets where the magnetic moments are partially or
completely static in the ground state, in a quantum spin liquid they remain in
collective motion down to the lowest temperatures. The importance of this state
is that it is coherent and highly entangled without breaking local symmetries.
Such phenomena is usually sought in simple lattices where antiferromagnetic
interactions and/or anisotropies that favor specific alignments of the magnetic
moments are "frustrated" by lattice geometries incompatible with such order
e.g. triangular structures. Despite an extensive search among such compounds,
experimental realizations remain very few. Here we describe the investigation
of a novel, unexplored magnetic system consisting of strong ferromagnetic and
weaker antiferromagnetic isotropic interactions as realized by the compound
CaCrO. Despite its exotic structure we show both
experimentally and theoretically that it displays all the features expected of
a quantum spin liquid including coherent spin dynamics in the ground state and
the complete absence of static magnetism.Comment: Modified version accepted in Nature Physic
Discrete exterior calculus (DEC) for the surface Navier-Stokes equation
We consider a numerical approach for the incompressible surface Navier-Stokes
equation. The approach is based on the covariant form and uses discrete
exterior calculus (DEC) in space and a semi-implicit discretization in time.
The discretization is described in detail and related to finite difference
schemes on staggered grids in flat space for which we demonstrate second order
convergence. We compare computational results with a vorticity-stream function
approach for surfaces with genus 0 and demonstrate the interplay between
topology, geometry and flow properties. Our discretization also allows to
handle harmonic vector fields, which we demonstrate on a torus.Comment: 21 pages, 9 figure
Ground-state properties of the spin-1/2 antiferromagnetic Heisenberg model on the triangular lattice: A variational study based on entangled-plaquette states
We study, on the basis of the general entangled-plaquette variational ansatz,
the ground-state properties of the spin-1/2 antiferromagnetic Heisenberg model
on the triangular lattice. Our numerical estimates are in good agreement with
available exact results and comparable, for large system sizes, to those
computed via the best alternative numerical approaches, or by means of
variational schemes based on specific (i.e., incorporating problem dependent
terms) trial wave functions. The extrapolation to the thermodynamic limit of
our results for lattices comprising up to N=324 spins yields an upper bound of
the ground-state energy per site (in units of the exchange coupling) of
[ for the XX model], while the estimated
infinite-lattice order parameter is (i.e., approximately 64% of the
classical value).Comment: 8 pages, 3 tables, 2 figure
Fe-implanted ZnO: Magnetic precipitates versus dilution
Nowadays ferromagnetism is often found in potential diluted magnetic
semiconductor systems. However, many authors argue that the observed
ferromagnetism stems from ferromagnetic precipitates or spinodal decomposition
rather than from carrier mediated magnetic impurities, as required for a
diluted magnetic semiconductor. In the present paper we answer this question
for Fe-implanted ZnO single crystals comprehensively. Different implantation
fluences and temperatures and post-implantation annealing temperatures have
been chosen in order to evaluate the structural and magnetic properties over a
wide range of parameters. Three different regimes with respect to the Fe
concentration and the process temperature are found: 1) Disperse Fe and
Fe at low Fe concentrations and low processing temperatures, 2)
FeZnO at very high processing temperatures and 3) an intermediate
regime with a co-existence of metallic Fe (Fe) and ionic Fe (Fe and
Fe). Ferromagnetism is only observed in the latter two cases, where
inverted ZnFeO and -Fe nanocrystals are the origin of the
observed ferromagnetic behavior, respectively. The ionic Fe in the last case
could contribute to a carrier mediated coupling. However, their separation is
too large to couple ferromagnetically due to the lack of p-type carrier. For
comparison investigations of Fe-implanted epitaxial ZnO thin films are
presented.Comment: 14 pages, 17 figure
- …
