3,291 research outputs found
Expansion-limited aggregation of nanoclusters in a single-pulse laser-produced plume
Formation of carbon nanoclusters in a single-laser-pulse created ablation plume was studied both in vacuum and in a noble gas environment at various pressures. The developed theory provides cluster radius dependence on combination of laser parameters, properties of ablated material, and type and pressure of an ambient gas in agreement with experiments. The experiments were performed on carbon nanoclusters formed by laser ablation of graphite targets with 12 picosecond 532 nm laser pulses at MHz-range repetition rate in a broad range of ambient He, Ar, Kr, and Xe gas pressures from 2× 10-2 to 1500 Torr. The experimental results confirmed our theoretical prediction that the average size of the nanoparticles depends weakly on the type of the ambient gas used, and is determined exclusively by the single laser pulse parameters even at the repetition rate as high as 28 MHz with the time gap 36 ns between the pulses. The most important finding relates to the fact that in vacuum the cluster size is mainly determined by hydrodynamic expansion of the plume while in the ambient gas it is controlled by atomic diffusion in the gas. We demonstrate that the ultrashort pulses can be used for production of clusters with the size less than the critical value, which separates the particles with properties drastically different from those of a material in a bulk. The presented results of experiments on formation of carbon nanoclusters are in close agreement with the theoretical scaling. The developed theory is applicable for cluster formation from any monatomic material, such as silicon for example
Excitation of Coherent Phonons in Crystalline B: theory for driving atomic vibrations by femtosecond pulses
In this paper we present experimental and theoretical studies of reflectivity oscillations of an optical probe beam reflected from a single-crystal of bismuth excited by 35 fs laser pulses at deposited energy density above the melting temperature. Coherent and incoherent lattice dynamics as well as electrons dynamics were investigated starting from the reflectivity changes, measured with high accuracy ΔR/R < 10. The complex behaviour of the reflectivity could not be explained in the light of the existing theories. Therefore, we developed a new theory, starting from the very basic principles of lasermatter interaction, which shows good agreement with experimental results. We establish a direct dependence of the transient reflectivity on atomic motions driven by electron temperature gradient through electron-phonon coupling
Cluster formation through the action of a single picosecond laser pulse
We demonstrate experimentally and describe theoretically the formation of carbon nanoclusters created by single picosecond laser pulses. We show that the average size of a nanocluster is determined exclusively by single laser pulse parameters and is independent of the gas fill (He, Ar, Kr, Xe) and pressure in a range from 20mTorr to 200 Torr. Simple kinetic theory allows estimates to be made of the cluster size, which are in qualitative agreement with the experimental data. We conclude that the role of the buffer gas is to induce a transition between thin solid film formation on the substrate and foam formation by diffusing the clusters through the gas, with no significant effect upon the average cluster size
Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses
We report experiments on the ablation of arsenic trisulphide and silicon using high-repetition-rate (megahertz) trains of picosecond pulses. In the case of arsenic trisulphide, the average single pulse fluence at ablation threshold is found to be >100 times lower when pulses are delivered as a 76-MHz train compared with the case of a solitary pulse. For silicon, however, the threshold for a 4.1-MHz train equals the value for a solitary pulse. A model of irradiation by high-repetition-rate pulse trains demonstrates that for arsenic trisulphide energy accumulates in the target surface from several hundred successive pulses, lowering the ablation threshold and causing a change from the laser-solid to laser-plasma mode as the surface temperature increases
Unconventional magnetism in all-carbon nanofoam
We report production of nanostructured carbon foam by a high-repetition-rate,
high-power laser ablation of glassy carbon in Ar atmosphere. A combination of
characterization techniques revealed that the system contains both sp2 and sp3
bonded carbon atoms. The material is a novel form of carbon in which
graphite-like sheets fill space at very low density due to strong hyperbolic
curvature, as proposed for ?schwarzite?. The foam exhibits ferromagnetic-like
behaviour up to 90 K, with a narrow hysteresis curve and a high saturation
magnetization. Such magnetic properties are very unusual for a carbon
allotrope. Detailed analysis excludes impurities as the origin of the magnetic
signal. We postulate that localized unpaired spins occur because of topological
and bonding defects associated with the sheet curvature, and that these spins
are stabilized due to the steric protection offered by the convoluted sheets.Comment: 14 pages, including 2 tables and 7 figs. Submitted to Phys Rev B 10
September 200
Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics
The mechanism of ablation of solids by intense femtosecond laser pulses is
described in an explicit analytical form. It is shown that at high intensities
when the ionization of the target material is complete before the end of the
pulse, the ablation mechanism is the same for both metals and dielectrics. The
physics of this new ablation regime involves ion acceleration in the
electrostatic field caused by charge separation created by energetic electrons
escaping from the target. The formulae for ablation thresholds and ablation
rates for metals and dielectrics, combining the laser and target parameters,
are derived and compared to experimental data. The calculated dependence of the
ablation thresholds on the pulse duration is in agreement with the experimental
data in a femtosecond range, and it is linked to the dependence for nanosecond
pulses.Comment: 27 pages incl.3 figs; presented at CLEO-Europe'2000 11-15 Sept.2000;
papers QMD6 and CTuK11
The Hvar survey for roAp stars: II. Final results (Research Note)
The 60 known rapidly oscillating Ap (roAp) stars are excellent laboratories
to test pulsation models in the presence of stellar magnetic fields. Our survey
is dedicated to search for new group members in the Northern Hemisphere. We
attempt to increase the number of known chemically peculiar stars that are
known to be pulsationally unstable. About 40 h of new CCD photometric data of
21 roAp candidates, observed at the 1m Austrian-Croatian Telescope (Hvar
Observatory) are presented. We carefully analysed these to search for
pulsations in the frequency range of up to 10mHz. No new roAp star was detected
among the observed targets. The distribution of the upper limits for roAp-like
variations is similar to that of previoius similar efforts using
photomultipliers and comparable telescope sizes. In addition to photometric
observations, we need to consolidate spectroscopic information to select
suitable targets.Comment: 8 pages, 5 figures, accepted by Astronomy & Astrophysic
Investigation of parameter uncertainty and identifiability of the hydrological model WaSiM-ETH
International audienceThe identification of optimum model parameters may be influenced by temporal or event-specific changes of optimum parameter ranges and the length and information content of calibration data. These effects were studied for the hydrological model WaSiM-ETH in a 170 km2 catchment. Based on a Monte-Carlo simulation including seven model parameters, we investigated temporal and state dependent changes of parameter identifiability using the DYNIA algorithm. The effect of data length was studied using a modified DYNIA approach based on a growing window algorithm. The DYNIA analysis revealed temporal changes of identifiability for the snow melt runoff parameter cmelt, which is only identifiable during winter runoff, and for the drainage density parameter drd. The drd parameter was closely related to observed discharge (or catchment moisture), when re-ordering the time series by discharge. Such dependencies probably result from processes not included in model equations. The growing window analysis shows that more than one year of data did not result in improved identification of model parameters cmelt and drd. Using the re-ordered data series, good identifiability of cmelt was bound to high discharges, while identifiability of drd changed with the addition of further values in descending or ascending order. The methodology revealed structural problems with regard to the parameter drd, which are not yet completely understood and require further investigation
- …
