3,881 research outputs found

    Random-field-induced disordering mechanism in a disordered ferromagnet: Between the Imry-Ma and the standard disordering mechanism

    Full text link
    Random fields disorder Ising ferromagnets by aligning single spins in the direction of the random field in three space dimensions, or by flipping large ferromagnetic domains at dimensions two and below. While the former requires random fields of typical magnitude similar to the interaction strength, the latter Imry-Ma mechanism only requires infinitesimal random fields. Recently, it has been shown that for dilute anisotropic dipolar systems a third mechanism exists, where the ferromagnetic phase is disordered by finite-size glassy domains at a random field of finite magnitude that is considerably smaller than the typical interaction strength. Using large-scale Monte Carlo simulations and zero-temperature numerical approaches, we show that this mechanism applies to disordered ferromagnets with competing short-range ferromagnetic and antiferromagnetic interactions, suggesting its generality in ferromagnetic systems with competing interactions and an underlying spin-glass phase. A finite-size-scaling analysis of the magnetization distribution suggests that the transition might be first order.Comment: 12 pages, 7 figures, 4 table

    Doubly perturbed S3S_3 neutrinos and the s13s_{13} mixing parameter

    Full text link
    We further study a predictive model for the masses and mixing matrix of three Majorana neutrinos. At zeroth order the model yielded degenerate neutrinos and a generalized ``tribimaximal" mixing matrix. At first order the mass splitting was incorporated and the tribimaximal mixing matrix emerged with very small corrections but with a zero value for the parameter s13s_{13}. In the present paper a different, assumed weaker, perturbation is included which gives a non zero value for s13s_{13} and further corrections to other quantities. These corrections are worked out and their consequences discussed under the simplifying assumption that the conventional CP violation phase vanishes. It is shown that the existing measurements of the parameter s23s_{23} provide strong bounds on s13s_{13} in this model.Comment: 8 page

    Existence of a Thermodynamic Spin-Glass Phase in the Zero-Concentration Limit of Anisotropic Dipolar Systems

    Get PDF
    The nature of ordering in dilute dipolar interacting systems dates back to the work of Debye and is one of the most basic, oldest and as-of-yet unsettled problems in magnetism. While spin-glass order is readily observed in several RKKY-interacting systems, dipolar spin-glasses are subject of controversy and ongoing scrutiny, e.g., in LiHoxY1xF4{{\rm LiHo_xY_{1-x}F_4}}, a rare-earth randomly diluted uniaxial (Ising) dipolar system. In particular, it is unclear if the spin-glass phase in these paradigmatic materials persists in the limit of zero concentration or not. We study an effective model of LiHoxY1xF4{{\rm LiHo_xY_{1-x}F_4}} using large-scale Monte Carlo simulations that combine parallel tempering with a special cluster algorithm tailored to overcome the numerical difficulties that occur at extreme dilutions. We find a paramagnetic to spin-glass phase transition for all Ho ion concentrations down to the smallest concentration numerically accessible of 0.1%, and including Ho ion concentrations which coincide with those studied experimentally up to 16.7%. Our results suggest that randomly-diluted dipolar Ising systems have a spin-glass phase in the limit of vanishing dipole concentration, with a critical temperature vanishing linearly with concentration, in agreement with mean field theory.Comment: 6 pages, 3 figures, 2 table

    Novel disordering mechanism in ferromagnetic systems with competing interactions

    Get PDF
    Ferromagnetic Ising systems with competing interactions are considered in the presence of a random field. We find that in three space dimensions the ferromagnetic phase is disordered by a random field which is considerably smaller than the typical interaction strength between the spins. This is the result of a novel disordering mechanism triggered by an underlying spin-glass phase. Calculations for the specific case of the long-range dipolar LiHo_xY_{1-x}F_4 compound suggest that the above mechanism is responsible for the peculiar dependence of the critical temperature on the strength of the random field and the broadening of the susceptibility peaks as temperature is decreased, as found in recent experiments by Silevitch et al. [Nature (London) 448, 567 (2007)]. Our results thus emphasize the need to go beyond the standard Imry-Ma argument when studying general random-field systems.Comment: 4+2 pages, 3 figure

    Double Threefold Degeneracies for Active and Sterile Neutrinos

    Get PDF
    We explore the possibility that the 3 active (doublet) neutrinos have nearly degenerate masses which are split only by the usual seesaw mechanism from 3 sterile (singlet) neutrinos in the presence of a softly broken A4A_4 symmetry. We take the unconventional view that the sterile neutrinos may be light, i.e. less than 1 keV, and discuss some very interesting and novel phenomenology, including a connection between the LSND neutrino data and solar neutrino oscillations.Comment: 8 pages, no figur

    Role of Light Vector Mesons in the Heavy Particle Chiral Lagrangian

    Get PDF
    We give the general framework for adding "light" vector particles to the heavy hadron effective chiral Lagrangian. This has strong motivations both from the phenomenological and aesthetic standpoints. An application to the already observed D \rightarrow \overbar{K^*} weak transition amplitude is discussed.Comment: 19 pages, LaTeX documen

    Magnetization of small lead particles

    Full text link
    The magnetization of an ensemble of isolated lead grains of sizes ranging from below 6 nm to 1000 nm is measured. A sharp disappearance of Meissner effect with lowering of the grain size is observed for the smaller grains. This is a direct observation by magnetization measurement of the occurrence of a critical particle size for superconductivity, which is consistent with Anderson's criterion.Comment: 7 pages, 5 figures, Submitted to PR

    Generalization of the Bound State Model

    Get PDF
    In the bound state approach the heavy baryons are constructed by binding, with any orbital angular momentum, the heavy meson multiplet to the nucleon considered as a soliton in an effective meson theory. We point out that this picture misses an entire family of states, labeled by a different angular momentum quantum number, which are expected to exist according to the geometry of the three-body constituent quark model (for N_C=3). To solve this problem we propose that the bound state model be generalized to include orbitally excited heavy mesons bound to the nucleon. In this approach the missing angular momentum is ``locked-up'' in the excited heavy mesons. In the simplest dynamical realization of the picture we give conditions on a set of coupling constants for the binding of the missing heavy baryons of arbitrary spin. The simplifications made include working in the large M limit, neglecting nucleon recoil corrections, neglecting mass differences among different heavy spin multiplets and also neglecting the effects of light vector mesons.Comment: 35 pages (ReVTeX), 2 PostScript Figure
    corecore