390 research outputs found
Coherent transport structures in magnetized plasmas II: Numerical results
In a pair of linked articles (called Article I and II respectively) we apply
the concept of Lagrangian Coherent Structures borrowed from the study of
Dynamical Systems to magnetic field configurations in order to separate regions
where field lines have different kind of behavior. In the present article,
article II, by means of a numerical procedure we investigate the Lagrangian
Coherent Structures in the case of a two-dimensional magnetic configuration
with two island chains that are generated by magnetic reconnection and evolve
nonlinearly in time. The comparison with previous results, obtained by assuming
a fixed magnetic field configuration, allows us to explore the dependence of
transport barriers on the particle velocity
International strategic alliances: stock market responses from Dutch firms partnering with EU, US and Japanese firms.
International; Strategic alliances; Alliances; Market; Responses; Firms; Management; School;
Ballistic electron transport through magnetic domain walls
Electron transport limited by the rotating exchange-potential of domain walls
is calculated in the ballistic limit for the itinerant ferromagnets Fe, Co, and
Ni. When realistic band structures are used, the domain wall magnetoresistance
is enhanced by orders of magnitude compared to the results for previously
studied two-band models. Increasing the pitch of a domain wall by confinement
in a nano-structured point contact is predicted to give rise to a strongly
enhanced magnetoresistance.Comment: 4 pages, 2 figures; to appear in PRB as a brief repor
Lagrangian Coherent Structures as a new frame to investigate the particle transport in highly chaotic magnetic systems
Coherent transport structures in magnetized plasmas, I : Theory
In a pair of linked articles (called Article I and II respectively) we apply
the concept of Lagrangian Coherent Structures (LCSs) borrowed from the study of
Dynamical Systems to magnetic field configurations in order to separate regions
where field lines have different kind of behaviour. In the present article,
article I, after recalling the definition and the properties of the LCSs, we
show how this conceptual framework can be applied to the study of particle
transport in a magnetized plasma. Futhermore we introduce a simplified model
that allows us to consider explicitly the case where the magnetic configuration
evolves in time on timescales comparable to the particle transit time through
the configuration. In contrast with previous works on this topic, this analysis
requires that a system that is aperiodic in time be investigated. In this case
the Poincar\'e map technique cannot be applied and LCSs remain the only viable
tool
Scattering theory of interface resistance in magnetic multilayers
The scattering theory of transport has to be applied with care in a diffuse
environment. Here we discuss how the scattering matrices of heterointerfaces
can be used to compute interface resistances of dirty magnetic multilayers.
First principles calculations of these interface resistances agree well with
experiments in the CPP (current perpendicular to the interface plane)
configuration.Comment: submitted to J. Phys. D (special issue at the occasion of Prof. T.
Shinjo's 60th birthday
Spin Torques in Ferromagnetic/Normal Metal Structures
Recent theories of spin-current-induced magnetization reversal are formulated
in terms of a spin-mixing conductance . We evaluate from
first-principles for a number of (dis)ordered interfaces between magnetic and
non-magnetic materials. In multi-terminal devices, the magnetization direction
of a one side of a tunnel junction or a ferromagnetic insulator can ideally be
switched with negligible charge current dissipation.Comment: 4 pages, 1 figur
Transcript-indexed ATAC-seq for precision immune profiling.
T cells create vast amounts of diversity in the genes that encode their T cell receptors (TCRs), which enables individual clones to recognize specific peptide-major histocompatibility complex (MHC) ligands. Here we combined sequencing of the TCR-encoding genes with assay for transposase-accessible chromatin with sequencing (ATAC-seq) analysis at the single-cell level to provide information on the TCR specificity and epigenomic state of individual T cells. By using this approach, termed transcript-indexed ATAC-seq (T-ATAC-seq), we identified epigenomic signatures in immortalized leukemic T cells, primary human T cells from healthy volunteers and primary leukemic T cells from patient samples. In peripheral blood CD4+ T cells from healthy individuals, we identified cis and trans regulators of naive and memory T cell states and found substantial heterogeneity in surface-marker-defined T cell populations. In patients with a leukemic form of cutaneous T cell lymphoma, T-ATAC-seq enabled identification of leukemic and nonleukemic regulatory pathways in T cells from the same individual by allowing separation of the signals that arose from the malignant clone from the background T cell noise. Thus, T-ATAC-seq is a new tool that enables analysis of epigenomic landscapes in clonal T cells and should be valuable for studies of T cell malignancy, immunity and immunotherapy
Ideal Spin Filters: Theoretical Study of Electron Transmission Through Ordered and Disordered Interfaces Between Ferromagnetic Metals and Semiconductors
It is predicted that certain atomically ordered interfaces between some
ferromagnetic metals (F) and semiconductors (S) should act as ideal spin
filters that transmit electrons only from the majority spin bands or only from
the minority spin bands of the F to the S at the Fermi energy, even for F with
both majority and minority bands at the Fermi level. Criteria for determining
which combinations of F, S and interface should be ideal spin filters are
formulated. The criteria depend only on the bulk band structures of the S and F
and on the translational symmetries of the S, F and interface. Several examples
of systems that meet these criteria to a high degree of precision are
identified. Disordered interfaces between F and S are also studied and it is
found that intermixing between the S and F can result in interfaces with spin
anti-filtering properties, the transmitted electrons being much less spin
polarized than those in the ferromagnetic metal at the Fermi energy. A patent
application based on this work has been commenced by Simon Fraser University.Comment: RevTeX, 12 pages, 5 figure
Observation of a controllable PI-junction in a 3-terminal Josephson device
Recently Baselmans et al. [Nature, 397, 43 (1999)] showed that the direction
of the supercurrent in a superconductor/normal/superconductor Josephson
junction can be reversed by applying, perpendicularly to the supercurrent, a
sufficiently large control current between two normal reservoirs. The novel
behavior of their 4-terminal device (called a controllable PI-junction) arises
from the nonequilibrium electron energy distribution established in the normal
wire between the two superconductors. We have observed a similar supercurrent
reversal in a 3-terminal device, where the control current passes from a single
normal reservoir into the two superconductors. We show theoretically that this
behavior, although intuitively less obvious, arises from the same
nonequilibrium physics present in the 4-terminal device. Moreover, we argue
that the amplitude of the PI-state critical current should be at least as large
in the 3-terminal device as in a comparable 4-terminal device.Comment: 4 pages, 4 figures, to appear in Physical Review B Rapid
Communication
- …
