229 research outputs found
Renormalized couplings and scaling correction amplitudes in the N-vector spin models on the sc and the bcc lattices
For the classical N-vector model, with arbitrary N, we have computed through
order \beta^{17} the high temperature expansions of the second field derivative
of the susceptibility \chi_4(N,\beta) on the simple cubic and on the body
centered cubic lattices. (The N-vector model is also known as the O(N)
symmetric classical spin Heisenberg model or, in quantum field theory, as the
lattice
O(N) nonlinear sigma model.) By analyzing the expansion of \chi_4(N,\beta) on
the two lattices, and by carefully allowing for the corrections to scaling, we
obtain updated estimates of the critical parameters and more accurate tests of
the hyperscaling relation d\nu(N) +\gamma(N) -2\Delta_4(N)=0 for a range of
values of the spin dimensionality N, including
N=0 [the self-avoiding walk model], N=1 [the Ising spin 1/2 model],
N=2 [the XY model], N=3 [the classical Heisenberg model]. Using the recently
extended series for the susceptibility and for the second correlation moment,
we also compute the dimensionless renormalized four point coupling constants
and some universal ratios of scaling correction amplitudes in fair agreement
with recent renormalization group estimates.Comment: 23 pages, latex, no figure
Critical Exponents, Hyperscaling and Universal Amplitude Ratios for Two- and Three-Dimensional Self-Avoiding Walks
We make a high-precision Monte Carlo study of two- and three-dimensional
self-avoiding walks (SAWs) of length up to 80000 steps, using the pivot
algorithm and the Karp-Luby algorithm. We study the critical exponents
and as well as several universal amplitude ratios; in
particular, we make an extremely sensitive test of the hyperscaling relation
. In two dimensions, we confirm the predicted
exponent and the hyperscaling relation; we estimate the universal
ratios , and (68\% confidence
limits). In three dimensions, we estimate with a
correction-to-scaling exponent (subjective 68\%
confidence limits). This value for agrees excellently with the
field-theoretic renormalization-group prediction, but there is some discrepancy
for . Earlier Monte Carlo estimates of , which were , are now seen to be biased by corrections to scaling. We estimate the
universal ratios and ; since , hyperscaling holds. The approach to
is from above, contrary to the prediction of the two-parameter
renormalization-group theory. We critically reexamine this theory, and explain
where the error lies.Comment: 87 pages including 12 figures, 1029558 bytes Postscript
(NYU-TH-94/09/01
Regularity Properties and Pathologies of Position-Space Renormalization-Group Transformations
We reconsider the conceptual foundations of the renormalization-group (RG)
formalism, and prove some rigorous theorems on the regularity properties and
possible pathologies of the RG map. Regarding regularity, we show that the RG
map, defined on a suitable space of interactions (= formal Hamiltonians), is
always single-valued and Lipschitz continuous on its domain of definition. This
rules out a recently proposed scenario for the RG description of first-order
phase transitions. On the pathological side, we make rigorous some arguments of
Griffiths, Pearce and Israel, and prove in several cases that the renormalized
measure is not a Gibbs measure for any reasonable interaction. This means that
the RG map is ill-defined, and that the conventional RG description of
first-order phase transitions is not universally valid. For decimation or
Kadanoff transformations applied to the Ising model in dimension ,
these pathologies occur in a full neighborhood of the low-temperature part of the first-order
phase-transition surface. For block-averaging transformations applied to the
Ising model in dimension , the pathologies occur at low temperatures
for arbitrary magnetic-field strength. Pathologies may also occur in the
critical region for Ising models in dimension . We discuss in detail
the distinction between Gibbsian and non-Gibbsian measures, and give a rather
complete catalogue of the known examples. Finally, we discuss the heuristic and
numerical evidence on RG pathologies in the light of our rigorous theorems.Comment: 273 pages including 14 figures, Postscript, See also
ftp.scri.fsu.edu:hep-lat/papers/9210/9210032.ps.
Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions
Excess contributions to the free energy due to interfaces occur for many
problems encountered in the statistical physics of condensed matter when
coexistence between different phases is possible (e.g. wetting phenomena,
nucleation, crystal growth, etc.). This article reviews two methods to estimate
both interfacial free energies and line tensions by Monte Carlo simulations of
simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid
exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is
based on thermodynamic integration. This method is useful to study flat and
inclined interfaces for Ising lattices, allowing also the estimation of line
tensions of three-phase contact lines, when the interfaces meet walls (where
"surface fields" may act). A generalization to off-lattice systems is described
as well.
The second method is based on the sampling of the order parameter
distribution of the system throughout the two-phase coexistence region of the
model. Both the interface free energies of flat interfaces and of (spherical or
cylindrical) droplets (or bubbles) can be estimated, including also systems
with walls, where sphere-cap shaped wall-attached droplets occur. The
curvature-dependence of the interfacial free energy is discussed, and estimates
for the line tensions are compared to results from the thermodynamic
integration method. Basic limitations of all these methods are critically
discussed, and an outlook on other approaches is given
Quantum computing implementations with neutral particles
We review quantum information processing with cold neutral particles, that
is, atoms or polar molecules. First, we analyze the best suited degrees of
freedom of these particles for storing quantum information, and then we discuss
both single- and two-qubit gate implementations. We focus our discussion mainly
on collisional quantum gates, which are best suited for atom-chip-like devices,
as well as on gate proposals conceived for optical lattices. Additionally, we
analyze schemes both for cold atoms confined in optical cavities and hybrid
approaches to entanglement generation, and we show how optimal control theory
might be a powerful tool to enhance the speed up of the gate operations as well
as to achieve high fidelities required for fault tolerant quantum computation.Comment: 19 pages, 12 figures; From the issue entitled "Special Issue on
Neutral Particles
Effect of concrete slats, three mat types and out-wintering pads on performance and welfare of finishing beef steers
peer-reviewedBackground
The objective was to investigate the effect of placing mats on concrete slatted floors on performance, behaviour, hoof condition, dirt scores, physiological and immunological variables of beef steers, and to compare responses with animals on out-wintering pads. Continental crossbred beef steers [n = 360; mean (±SD) initial live weight 539 kg (42.2)] were blocked by breed and live weight and randomly assigned to one of five treatments; (1) Concrete slats alone, (2) Mat 1 (Natural Rubber structure) (Durapak Rubber Products), (3) Mat 2 (Natural rubber structure) (EasyFix), (4) Mat 3 (modified ethylene vinyl acetate (EVA) foam structure) and (5) Out-wintering pads (OWP’s).
Results
Animals on the OWPs had a greater (P 0.05) as the other treatments. Animals on the OWPs had reduced lying percentage time compared with all the other treatments. Dry matter (DM) intake was greater for animals on the OWPs compared with all the other treatments. Carcass weight, kill out proportion, carcass fat score, carcass composition score, FCR and physiological responses were similar (P > 0.05) among treatments. No incidence of laminitis was observed among treatments. The number of hoof lesions was greater on all mat types (P < 0.05) compared with concrete slats and OWP treatments. Dirt scores were greater (P < 0.05) for animals on OWPs when measured on days 42, 84, 105, 126 and 150 compared with animals on slats.
Conclusions
Under the conditions adopted for the present study, there was no evidence to suggest that animals housed on bare concrete slats were disadvantaged in respect of animal welfare compared with animals housed on other floor types. It is concluded that the welfare of steers was not adversely affected by slats compared with different mat types or OWPs
Properties of Rubble-Pile Asteroid (101955) Bennu from OSIRIS-REx Imaging and Thermal Analysis
Establishing the abundance and physical properties of regolith and boulders on asteroids is crucial for understanding the formation and degradation mechanisms at work on their surfaces. Using images and thermal data from NASA's Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) spacecraft, we show that asteroid (101955) Bennu's surface is globally rough, dense with boulders, and low in albedo. The number of boulders is surprising given Bennu's moderate thermal inertia, suggesting that simple models linking thermal inertia to particle size do not adequately capture the complexity relating these properties. At the same time, we find evidence for a wide range of particle sizes with distinct albedo characteristics. Our findings imply that ages of Bennu's surface particles span from the disruption of the asteroid's parent body (boulders) to recent in situ production (micrometre-scale particles)
Temporal variation in sex allocation in the mealybug <em>Planococcus citri</em>:Adaptation, constraint, or both?
Sex ratio theory has been very successful in predicting under which circumstances parents should bias their investment towards a particular offspring sex. However, most examples of adaptive sex ratio bias come from species with well-defined mating systems and sex determining mechanisms, while in many other groups there is still an on-going debate about the adaptive nature of sex allocation. Here we study the sex allocation in the mealybug Planococcus citri, a species in which it is currently unclear how females adjust their sex ratio, even though experiments have shown support for facultative sex ratio adjustment. Previous work has shown that the sex ratio females produce changes over the oviposition period, with males being overproduced early and late in the laying sequence. Here we investigate this complex pattern further, examining both the robustness of the pattern and possible explanations for it. We first show that this sex allocation behaviour is indeed consistent across lines from three geographical regions. Second, we test whether females produce sons first in order to synchronize reproductive maturation of her offspring, although our data provide little evidence for this adaptive explanation. Finally we test the age at which females are able to mate successfully and show that females are able to mate and store sperm before adult eclosion. Whilst early-male production may still function in promoting protandry in mealybugs, we discuss whether mechanistic constraints limit how female allocate sex across their lifetime
Single-Spin Addressing in an Atomic Mott Insulator
Ultracold atoms in optical lattices are a versatile tool to investigate
fundamental properties of quantum many body systems. In particular, the high
degree of control of experimental parameters has allowed the study of many
interesting phenomena such as quantum phase transitions and quantum spin
dynamics. Here we demonstrate how such control can be extended down to the most
fundamental level of a single spin at a specific site of an optical lattice.
Using a tightly focussed laser beam together with a microwave field, we were
able to flip the spin of individual atoms in a Mott insulator with
sub-diffraction-limited resolution, well below the lattice spacing. The Mott
insulator provided us with a large two-dimensional array of perfectly arranged
atoms, in which we created arbitrary spin patterns by sequentially addressing
selected lattice sites after freezing out the atom distribution. We directly
monitored the tunnelling quantum dynamics of single atoms in the lattice
prepared along a single line and observed that our addressing scheme leaves the
atoms in the motional ground state. Our results open the path to a wide range
of novel applications from quantum dynamics of spin impurities, entropy
transport, implementation of novel cooling schemes, and engineering of quantum
many-body phases to quantum information processing.Comment: 8 pages, 5 figure
Circulating microRNAs in sera correlate with soluble biomarkers of immune activation but do not predict mortality in ART treated individuals with HIV-1 infection: A case control study
Introduction: The use of anti-retroviral therapy (ART) has dramatically reduced HIV-1 associated morbidity and mortality. However, HIV-1 infected individuals have increased rates of morbidity and mortality compared to the non-HIV-1 infected population and this appears to be related to end-organ diseases collectively referred to as Serious Non-AIDS Events (SNAEs). Circulating miRNAs are reported as promising biomarkers for a number of human disease conditions including those that constitute SNAEs. Our study sought to investigate the potential of selected miRNAs in predicting mortality in HIV-1 infected ART treated individuals. Materials and Methods: A set of miRNAs was chosen based on published associations with human disease conditions that constitute SNAEs. This case: control study compared 126 cases (individuals who died whilst on therapy), and 247 matched controls (individuals who remained alive). Cases and controls were ART treated participants of two pivotal HIV-1 trials. The relative abundance of each miRNA in serum was measured, by RTqPCR. Associations with mortality (all-cause, cardiovascular and malignancy) were assessed by logistic regression analysis. Correlations between miRNAs and CD4+ T cell count, hs-CRP, IL-6 and D-dimer were also assessed. Results: None of the selected miRNAs was associated with all-cause, cardiovascular or malignancy mortality. The levels of three miRNAs (miRs -21, -122 and -200a) correlated with IL-6 while miR-21 also correlated with D-dimer. Additionally, the abundance of miRs -31, -150 and -223, correlated with baseline CD4+ T cell count while the same three miRNAs plus miR- 145 correlated with nadir CD4+ T cell count. Discussion: No associations with mortality were found with any circulating miRNA studied. These results cast doubt onto the effectiveness of circulating miRNA as early predictors of mortality or the major underlying diseases that contribute to mortality in participants treated for HIV-1 infection
- …
