4,231 research outputs found
A variational approach to the stochastic aspects of cellular signal transduction
Cellular signaling networks have evolved to cope with intrinsic fluctuations,
coming from the small numbers of constituents, and the environmental noise.
Stochastic chemical kinetics equations govern the way biochemical networks
process noisy signals. The essential difficulty associated with the master
equation approach to solving the stochastic chemical kinetics problem is the
enormous number of ordinary differential equations involved. In this work, we
show how to achieve tremendous reduction in the dimensionality of specific
reaction cascade dynamics by solving variationally an equivalent quantum field
theoretic formulation of stochastic chemical kinetics. The present formulation
avoids cumbersome commutator computations in the derivation of evolution
equations, making more transparent the physical significance of the variational
method. We propose novel time-dependent basis functions which work well over a
wide range of rate parameters. We apply the new basis functions to describe
stochastic signaling in several enzymatic cascades and compare the results so
obtained with those from alternative solution techniques. The variational
ansatz gives probability distributions that agree well with the exact ones,
even when fluctuations are large and discreteness and nonlinearity are
important. A numerical implementation of our technique is many orders of
magnitude more efficient computationally compared with the traditional Monte
Carlo simulation algorithms or the Langevin simulations.Comment: 15 pages, 11 figure
High throughput particle analysis: combining dielectrophoretic particle focussing with confocal optical detection
A microflow cytometer has been fabricated that detects and counts fluorescent particles flowing through a microchannel at a high speed based upon their fluorescence emission intensity. Dielectrophoresis is used to continuously focus particles within the flowing fluid stream into the centre of the device, which is 40 μm high and 250 μm wide. The method ensures that all the particles pass through an interrogation region approximately 5 μm in diameter, which is created by focusing a beam of light into a spot. The functioning of the device was demonstrated by detecting and counting fluorescent latex particles at a rate of up to 250 particles/s. A mixture of three different populations of latex particle was used, each sub-population with a distinct level of fluorescent intensity. The device was evaluated by comparison with a conventional fluorescent activated cell sorter (FACS) and numerical simulation demonstrated that for 6 mico m beads, and for this design of chip the theoretical throughput is of the order of 1000 particles/s (corresponding to a particle velocty of 1 mm/s)
Regulatory control and the costs and benefits of biochemical noise
Experiments in recent years have vividly demonstrated that gene expression
can be highly stochastic. How protein concentration fluctuations affect the
growth rate of a population of cells, is, however, a wide open question. We
present a mathematical model that makes it possible to quantify the effect of
protein concentration fluctuations on the growth rate of a population of
genetically identical cells. The model predicts that the population's growth
rate depends on how the growth rate of a single cell varies with protein
concentration, the variance of the protein concentration fluctuations, and the
correlation time of these fluctuations. The model also predicts that when the
average concentration of a protein is close to the value that maximizes the
growth rate, fluctuations in its concentration always reduce the growth rate.
However, when the average protein concentration deviates sufficiently from the
optimal level, fluctuations can enhance the growth rate of the population, even
when the growth rate of a cell depends linearly on the protein concentration.
The model also shows that the ensemble or population average of a quantity,
such as the average protein expression level or its variance, is in general not
equal to its time average as obtained from tracing a single cell and its
descendants. We apply our model to perform a cost-benefit analysis of gene
regulatory control. Our analysis predicts that the optimal expression level of
a gene regulatory protein is determined by the trade-off between the cost of
synthesizing the regulatory protein and the benefit of minimizing the
fluctuations in the expression of its target gene. We discuss possible
experiments that could test our predictions.Comment: Revised manuscript;35 pages, 4 figures, REVTeX4; to appear in PLoS
Computational Biolog
The Physics of Ultraperipheral Collisions at the LHC
We discuss the physics of large impact parameter interactions at the LHC:
ultraperipheral collisions (UPCs). The dominant processes in UPCs are
photon-nucleon (nucleus) interactions. The current LHC detector configurations
can explore small hard phenomena with nuclei and nucleons at photon-nucleon
center-of-mass energies above 1 TeV, extending the range of HERA by a
factor of ten. In particular, it will be possible to probe diffractive and
inclusive parton densities in nuclei using several processes. The interaction
of small dipoles with protons and nuclei can be investigated in elastic and
quasi-elastic and production as well as in high
production accompanied by a rapidity gap. Several of these phenomena
provide clean signatures of the onset of the new high gluon density QCD regime.
The LHC is in the kinematic range where nonlinear effects are several times
larger than at HERA. Two-photon processes in UPCs are also studied. In
addition, while UPCs play a role in limiting the maximum beam luminosity, they
can also be used a luminosity monitor by measuring mutual electromagnetic
dissociation of the beam nuclei. We also review similar studies at HERA and
RHIC as well as describe the potential use of the LHC detectors for UPC
measurements.Comment: 229 Pages, 121 figure
Cellular and ultrastructural characterization of the grey-morph phenotype in southern right whales (Eubalaena australis)
Southern right whales (SRWs, Eubalena australis) are polymorphic for an X-linked pigmentation pattern known as grey morphism. Most SRWs have completely black skin with white patches on their bellies and occasionally on their backs; these patches remain white as the whale ages. Grey morphs (previously referred to as partial albinos) appear mostly white at birth, with a splattering of rounded black marks; but as the whales age, the white skin gradually changes to a brownish grey color. The cellular and developmental bases of grey morphism are not understood. Here we describe cellular and ultrastructural features of grey-morph skin in relation to that of normal, wild-type skin. Melanocytes were identified histologically and counted, and melanosomes were measured using transmission electron microscopy. Grey-morph skin had fewer melanocytes when compared to wild-type skin, suggesting reduced melanocyte survival, migration, or proliferation in these whales. Grey-morph melanocytes had smaller melanosomes relative to wild-type skin, normal transport of melanosomes to surrounding keratinocytes, and normal localization of melanin granules above the keratinocyte nuclei. These findings indicate that SRW grey-morph pigmentation patterns are caused by reduced numbers of melanocytes in the skin, as well as by reduced amounts of melanin production and/or reduced sizes of mature melanosomes. Grey morphism is distinct from piebaldism and albinism found in other species, which are genetic pigmentation conditions resulting from the local absence of melanocytes, or the inability to synthesize melanin, respectively
Strangeness Enhancement in Cu+Cu and Au+Au Collisions at \sqrt{s_{NN}} = 200 GeV
We report new STAR measurements of mid-rapidity yields for the ,
, , , , ,
particles in Cu+Cu collisions at \sNN{200}, and mid-rapidity
yields for the , , particles in Au+Au at
\sNN{200}. We show that at a given number of participating nucleons, the
production of strange hadrons is higher in Cu+Cu collisions than in Au+Au
collisions at the same center-of-mass energy. We find that aspects of the
enhancement factors for all particles can be described by a parameterization
based on the fraction of participants that undergo multiple collisions
Production of Pairs Accompanied by Nuclear Dissociation in Ultra-Peripheral Heavy Ion Collision
We present the first data on pair production accompanied by nuclear
breakup in ultra-peripheral gold-gold collisions at a center of mass energy of
200 GeV per nucleon pair. The nuclear breakup requirement selects events at
small impact parameters, where higher-order corrections to the pair production
cross section should be enhanced. We compare the pair kinematic distributions
with two calculations: one based on the equivalent photon approximation, and
the other using lowest-order quantum electrodynamics (QED); the latter includes
the photon virtuality. The cross section, pair mass, rapidity and angular
distributions are in good agreement with both calculations. The pair transverse
momentum, , spectrum agrees with the QED calculation, but not with the
equivalent photon approach. We set limits on higher-order contributions to the
cross section. The and spectra are similar, with no evidence
for interference effects due to higher-order diagrams.Comment: 6 pages with 3 figures Slightly modified version that will appear in
Phys. Rev.
Azimuthal anisotropy of K0s and Lambda prduction at mid-rapidity from Au+Au collisions at root s = 130 GeV
We report STAR results on the azimuthal anisotropy parameter v2 for strange
particles K0S, L and Lbar at midrapidity in Au+Au collisions at sNN = 130 GeV
at RHIC. The value of v2 as a function of transverse momentum of the produced
particles pt and collision centrality is presented for both particles up to pt
3.0 GeV/c. A strong pt dependence in v2 is observed up to 2.0 GeV/c. The v2
measurement is compared with hydrodynamic model calculations. The physics
implications of the pt integrated v2 magnitude as a function of particle mass
are also discussed.Comment: 6 pages, 4 figures, by the STAR collaboratio
Studies of di-jet survival and surface emission bias in Au+Au collisions via angular correlations with respect to back-to-back leading hadrons
We report first results from an analysis based on a new multi-hadron
correlation technique, exploring jet-medium interactions and di-jet surface
emission bias at RHIC. Pairs of back-to-back high transverse momentum hadrons
are used for triggers to study associated hadron distributions. In contrast
with two- and three-particle correlations with a single trigger with similar
kinematic selections, the associated hadron distribution of both trigger sides
reveals no modification in either relative pseudo-rapidity or relative
azimuthal angle from d+Au to central Au+Au collisions. We determine associated
hadron yields and spectra as well as production rates for such correlated
back-to-back triggers to gain additional insights on medium properties.Comment: By the STAR Collaboration. 6 pages, 2 figure
- …
