2,610 research outputs found

    Triple-deck and direct numerical simulation analyses high-speed subsonic flows past a roughness element

    Get PDF
    This paper is concerned with the boundary-layer separation in subsonic and transonic flows caused by a two-dimensional isolated wall roughness. The process of the separation is analysed by means of two approaches: the direct numerical simulation (DNS) of the flow using the Navier–Stokes equations, and the numerical solution of the triple-deck equations. Since the triple-deck theory relies on the assumption that the Reynolds number (Re\mathit{Re}) is large, we performed the Navier–Stokes calculations at Re=4×105\mathit{Re}=4\times 10^{5} based on the distance of the roughness element from the leading edge of the flat plate. This Re\mathit{Re} is also relevant for aeronautical applications. Two sets of calculation were conducted with the free-stream Mach number Ma=0.5\mathit{Ma}_{\infty }=0.5 and Ma=0.87\mathit{Ma}_{\infty }=0.87. We used different roughness element heights, some of which were large enough to cause a well-developed separation region behind the roughness. We found that the two approaches generally compare well with one another in terms of wall shear stress, longitudinal pressure gradient and detachment/reattachment points of the separation bubbles (when present). The main differences were found in proximity to the centre of the roughness element, where the wall shear stress and longitudinal pressure gradient predicted by the triple-deck theory are noticeably different from those predicted by DNS. In addition, DNS predicts slightly longer separation regions.</jats:p

    Technology for the Future: In-Space Technology Experiments Program, part 2

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiments Program In-STEP 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/ university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part two of two parts and contains the critical technology presentations for the eight theme elements and a summary listing of critical space technology needs for each theme

    Voltage-controlled wavelength conversion by terahertz electro-optic modulation in double quantum wells

    Get PDF
    An undoped double quantum well (DQW) was driven with a terahertz (THz) electric field of frequency \omega_{THz} polarized in the growth direction, while simultaneously illuminated with a near-infrared (NIR) laser at frequency \omega_{NIR}. The intensity of NIR upconverted sidebands \omega_{sideband}=\omega_{NIR} + \omega_{THz} was maximized when a dc voltage applied in the growth direction tuned the excitonic states into resonance with both the THz and NIR fields. There was no detectable upconversion far from resonance. The results demonstrate the possibility of using gated DQW devices for all-optical wavelength shifting between optical communication channels separated by up to a few THz.Comment: 3 pages, 6 figures. Figures 5 and 6 are JPEG files, figures/fig5.jpg and fig6.jp

    Spatial eigensolution analysis of discontinuous Galerkin schemes with practical insights for under-resolved computations and implicit LES

    Get PDF
    The study focusses on the dispersion and diffusion characteristics of discontinuous spectral element methods - specifically discontinuous Galerkin (DG) - via the spatial eigensolution analysis framework built around a one-dimensional linear problem, namely the linear advection equation. Dispersion and diffusion characteristics are of critical importance when dealing with under-resolved computations, as they affect both the numerical stability of the simulation and the solution accuracy. The spatial eigensolution analysis carried out in this paper complements previous analyses based on the temporal approach, which are more commonly found in the literature. While the latter assumes periodic boundary conditions, the spatial approach assumes inflow/outflow type boundary conditions and is therefore better suited for the investigation of open flows typical of aerodynamic problems, including transitional and fully turbulent flows and aeroacoustics. The influence of spurious/reflected eigenmodes is assessed with regard to the presence of upwind dissipation, naturally present in DG methods. This provides insights into the accuracy and robustness of these schemes for under-resolved computations, including under-resolved direct numerical simulation (uDNS) and implicit large-eddy simulation (iLES). The results estimated from the spatial eigensolution analysis are verified using the one-dimensional linear advection equation and successively by performing two-dimensional compressible Euler simulations that mimic (spatially developing) grid turbulence

    Technology for the Future: In-Space Technology Experiments Program, part 1

    Get PDF
    The purpose of the Office of Aeronautics and Space Technology (OAST) In-Space Technology Experiment Program (In-STEP) 1988 Workshop was to identify and prioritize technologies that are critical for future national space programs and require validation in the space environment, and review current NASA (In-Reach) and industry/university (Out-Reach) experiments. A prioritized list of the critical technology needs was developed for the following eight disciplines: structures; environmental effects; power systems and thermal management; fluid management and propulsion systems; automation and robotics; sensors and information systems; in-space systems; and humans in space. This is part one of two parts and is the executive summary and experiment description. The executive summary portion contains keynote addresses, strategic planning information, and the critical technology needs summaries for each theme. The experiment description portion contains brief overviews of the objectives, technology needs and backgrounds, descriptions, and development schedules for current industry, university, and NASA space flight technology experiments

    CEO pay, shareholder returns, and accounting profits

    Get PDF
    We assess the impact on CEO pay (including salary, cash bonus, and benefits in kind) of changes in both accounting and shareholder returns in 99 British companies in the years 1972-89. After correcting for heterogeneity biases inherent in the standard specifications of the problem, we find a strong positive relationship between CEO pay and within-company changes in shareholder returns, and no statistically significant relationship between CEO pay and within-company changes in accounting returns. Differences between firms in long-term average profitability do appear to have a substantial effect on CEO pay, while differences between firms in shareholder returns add nothing to the within-firm pay dynamics.These findings call into question the rationale for explicitly share-based incentive schemes

    Dealiasing techniques for high-order spectral element methods on regular and irregular grids

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.High-order methods are becoming increasingly attractive in both academia and industry, especially in the context of computational fluid dynamics. However, before they can be more widely adopted, issues such as lack of robustness in terms of numerical stability need to be addressed, particularly when treating industrial-type problems where challenging geometries and a wide range of physical scales, typically due to high Reynolds numbers, need to be taken into account. One source of instability is aliasing effects which arise from the nonlinearity of the underlying problem. In this work we detail two dealiasing strategies based on the concept of consistent integration. The first uses a localised approach, which is useful when the nonlinearities only arise in parts of the problem. The second is based on the more traditional approach of using a higher quadrature. The main goal of both dealiasing techniques is to improve the robustness of high order spectral element methods, thereby reducing aliasing-driven instabilities. We demonstrate how these two strategies can be effectively applied to both continuous and discontinuous discretisations, where, in the latter, both volumetric and interface approximations must be considered. We show the key features of each dealiasing technique applied to the scalar conservation law with numerical examples and we highlight the main differences in terms of implementation between continuous and discontinuous spatial discretisations.This work was supported by the Laminar Flow Control Centre funded by Airbus/EADS and EPSRC under grant EP/I037946. We thank Dr. Colin Cotter for helpful discussions and Jean-Eloi Lombard for his assistance in the generation of results and figures for the NACA 0012 simulation. PV acknowledges the Engineering and Physical Sciences Research Council for their support via an Early Career Fellowship (EP/K027379/1). SJS additionally acknowledges Royal Academy of Engineering support under their research chair scheme. Data supporting this publication can be obtained on request from [email protected]
    corecore