333 research outputs found

    Let's Make Love: Whiteness, Cleanliness and Sexuality in the French Reception of Marilyn Monroe

    Get PDF
    Copyright © by SAGE PublicationsRichard Dyer’s seminal work on whiteness in film considers Marilyn Monroe as the epitome of an institutionally racist Hollywood system that imagines the most desirable woman to be blonde, given that blondeness is understood as a guarantee of whiteness. This article adds to other recent scholarship on Monroe that has sought to complicate this reading by examining other meanings that can be attributed to her bleached blonde hair. By closely analyzing media texts that discussed Monroe in 1950s France, this article demonstrates the way in which her performance of ideal American female sexuality was read through the prism of Monroe as icon of cleanliness and (linked) modernity. It examines the way in which Monroe’s modernity allowed her to partially escape the traditional feminine private sphere and it concludes that Monroe’s bleached blonde hair can be seen in this context as having liberatory potential

    Recent EUROfusion Achievements in Support of Computationally Demanding Multiscale Fusion Physics Simulations and Integrated Modeling

    Get PDF
    Integrated modeling (IM) of present experiments and future tokamak reactors requires the provision of computational resources and numerical tools capable of simulating multiscale spatial phenomena as well as fast transient events and relatively slow plasma evolution within a reasonably short computational time. Recent progress in the implementation of the new computational resources for fusion applications in Europe based on modern supercomputer technologies (supercomputer MARCONI-FUSION), in the optimization and speedup of the EU fusion-related first-principle codes, and in the development of a basis for physics codes/modules integration into a centrally maintained suite of IM tools achieved within the EUROfusion Consortium is presented. Physics phenomena that can now be reasonably modelled in various areas (core turbulence and magnetic reconnection, edge and scrape-off layer physics, radio-frequency heating and current drive, magnetohydrodynamic model, reflectometry simulations) following successful code optimizations and parallelization are briefly described. Development activities in support to IM are summarized. They include support to (1) the local deployment of the IM infrastructure and access to experimental data at various host sites, (2) the management of releases for sophisticated IM workflows involving a large number of components, and (3) the performance optimization of complex IM workflows.This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014 to 2018 under grant agreement 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission or ITER.Peer ReviewedPostprint (published version

    Papillomavirus Capsid Binding and Uptake by Cells From Different Tissues and Species

    Get PDF
    The inability of papillomaviruses (PV) to replicate in tissue culture cells has hampered the study of the PV life cycle. We investigated virus-cell interactions by the following two methods: (i) using purified bovine PV virions or human PV type 11 (HPV type 11) virus-like particles (VLP) to test the binding to eukaryotic cells and (ii) using different VLP-reporter plasmid complexes of HPV6b, HPV11 L1 or HPV11 L1/L2, and HPV16 L1 or HPV16 L1/L2 to study uptake of particles into different cell lines. Our studies showed that PV capsids bind to a broad range of cells in culture in a dose-dependent manner. Binding of PV capsids to cells can be blocked by pretreating the cells with the protease trypsin. Penetration of PV into cells was monitored by using complexes in which the purified PV capsids were physically linked to DNA containing the gene for beta-galactosidase driven by the human cytomegalovirus promoter. Expression of beta-galactosidase occurred in < 1% of the cells, and the efficiency of PV receptor-mediated gene delivery was greatly enhanced (up to 10 to 20% positive cells) by the use of a replication-defective adenovirus which promotes endosomal lysis. The data generated by this approach further confirmed the results obtained from the binding assays, showing that PV enter a wide range of cells and that these cells have all functions required for the uptake of PV. Binding and uptake of PV particles can be blocked by PV-specific antisera, and different PV particles compete for particle uptake. Our results suggest that the PV receptor is a conserved cell surface molecule(s) used by different PV and that the tropism of infection by different PV is controlled by events downstream of the initial binding and uptake

    Can Non-lytic CD8+T Cells Drive HIV-1 Escape?

    Get PDF
    The CD8+ T cell effector mechanisms that mediate control of HIV-1 and SIV infections remain poorly understood. Recent work suggests that the mechanism may be primarily non-lytic. This is in apparent conflict with the observation that SIV and HIV-1 variants that escape CD8+ T cell surveillance are frequently selected. Whilst it is clear that a variant that has escaped a lytic response can have a fitness advantage compared to the wild-type, it is less obvious that this holds in the face of non-lytic control where both wild-type and variant infected cells would be affected by soluble factors. In particular, the high motility of T cells in lymphoid tissue would be expected to rapidly destroy local effects making selection of escape variants by non-lytic responses unlikely. The observation of frequent HIV-1 and SIV escape poses a number of questions. Most importantly, is the consistent observation of viral escape proof that HIV-1- and SIV-specific CD8+ T cells lyse infected cells or can this also be the result of non-lytic control? Additionally, the rate at which a variant strain escapes a lytic CD8+ T cell response is related to the strength of the response. Is the same relationship true for a non-lytic response? Finally, the potential anti-viral control mediated by non-lytic mechanisms compared to lytic mechanisms is unknown. These questions cannot be addressed with current experimental techniques nor with the standard mathematical models. Instead we have developed a 3D cellular automaton model of HIV-1 which captures spatial and temporal dynamics. The model reproduces in vivo HIV-1 dynamics at the cellular and population level. Using this model we demonstrate that non-lytic effector mechanisms can select for escape variants but that outgrowth of the variant is slower and less frequent than from a lytic response so that non-lytic responses can potentially offer more durable control

    Development of a short form of Mini-Mental State Examination for the screening of dementia in older adults with a memory complaint: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary care physicians need a brief and accurate screening test of dementia. The objective of this study was to determine whether a short form of Mini-Mental State Examination (SMMSE) was as accurate as the Mini-Mental State Examination (MMSE) in screening dementia.</p> <p>Methods</p> <p>Based on case control design study, SMMSE and MMSE were assessed in 184 community-dwelling older adults (mean age 81.3 ± 6.5 years, 71.7% women) with memory complaint sent by their primary care physician to a memory clinic. Included participants were separated into two groups: cognitively healthy individuals and demented individuals.</p> <p>Results</p> <p>The trade-off between sensitivity and specificity of the SMMSE for clinically diagnosed dementia was 4. Based on the cut-off value ≤ 4 for SMMSE and a cut-off value ≤ 24 for MMSE, the sensitivity of both tests was similar (89.5% for SMMSE versus 90.0% for MMSE), whereas the specificity, the positive predictive values (PPV) and the negative predictive values (NPV) were higher for SMMSE compared to MMSE (85.4 versus 75.5% for specificity; 95.5% versus 92.8% for PPV; 70.0 versus 68.9 for NPV). The positive and negative Likehood Ratio (LR) of SMMSE were higher than those of MMSE (respectively, 6.1 versus 3.7; 8.1 versus 7.7). In addition, odds ratio (OR) for dementia was higher for the SMMSE compared to the MMSE (OR = 49.8 with 95% confident interval (CI) [18.0; 137.8] versus OR = 28.6 with 95% CI [11.6; 70.3]).</p> <p>Conclusions</p> <p>SMMSE seems to be an efficient short screening test for dementia among community-dwelling older adults with a memory complaint. Further research is needed to confirm its predictive values among unselected primary care older patients.</p

    Perturbation of the Dimer Interface of Triosephosphate Isomerase and its Effect on Trypanosoma cruzi

    Get PDF
    Most of the enzymes of parasites have their counterpart in the host. Throughout evolution, the three-dimensional architecture of enzymes and their catalytic sites are highly conserved. Thus, identifying molecules that act exclusively on the active sites of the enzymes from parasites is a difficult task. However, it is documented that the majority of enzymes consist of various subunits, and that conservation in the interface of the subunits is lower than in the catalytic site. Indeed, we found that there are significant differences in the interface between the two subunits of triosephosphate isomerase from Homo sapiens and Trypanosoma cruzi (TcTIM), which causes Chagas disease in the American continent. In the search for agents that specifically inhibit TcTIM, we found that 2,2′-dithioaniline (DTDA) is far more effective in inactivating TcTIM than the human enzyme, and that its detrimental effect is due to perturbation of the dimer interface. Remarkably, DTDA prevented the growth of Escherichia coli cells that had TcTIM instead of their own TIM and killed T. cruzi epimastigotes in culture. Thus, this study highlights a new approach base of targeting molecular interfaces of dimers

    Mesenchymal Stem Cells Exhibit Firm Adhesion, Crawling, Spreading and Transmigration across Aortic Endothelial Cells: Effects of Chemokines and Shear

    Get PDF
    Mesenchymal stem cells (MSCs) have anti-inflammatory and immunosuppressive properties and may be useful in the therapy of diseases such as arteriosclerosis. MSCs have some ability to traffic into inflamed tissues, however to exploit this therapeutically their migratory mechanisms need to be elucidated. This study examines the interaction of murine MSCs (mMSCs) with, and their migration across, murine aortic endothelial cells (MAECs), and the effects of chemokines and shear stress. The interaction of mMSCs with MAECs was examined under physiological flow conditions. mMSCs showed lack of interaction with MAECs under continuous flow. However, when the flow was stopped (for 10min) and then started, mMSCs adhered and crawled on the endothelial surface, extending fine microvillous processes (filopodia). They then spread extending pseudopodia in multiple directions. CXCL9 significantly enhanced the percentage of mMSCs adhering, crawling and spreading and shear forces markedly stimulated crawling and spreading. CXCL9, CXCL16, CCL20 and CCL25 significantly enhanced transendothelial migration across MAECs. The transmigrated mMSCs had down-regulated receptors CXCR3, CXCR6, CCR6 and CCR9. This study furthers the knowledge of MSC transendothelial migration and the effects of chemokines and shear stress which is of relevance to inflammatory diseases such as arteriosclerosis

    Developments in cell biology for quantitative immunoelectron microscopy based on thin sections: a review

    Get PDF
    Quantitative immunoelectron microscopy uses ultrathin sections and gold particle labelling to determine distributions of molecules across cell compartments. Here, we review a portfolio of new methods for comparing labelling distributions between different compartments in one study group (method 1) and between the same compartments in two or more groups (method 2). Specimen samples are selected unbiasedly and then observed and expected distributions of gold particles are estimated and compared by appropriate statistical procedures. The methods can be used to analyse gold label distributed between volume-occupying (organelle) and surface-occupying (membrane) compartments, but in method 1, membranes must be treated as organelles. With method 1, gold counts are combined with stereological estimators of compartment size to determine labelling density (LD). For volume-occupiers, LD can be expressed simply as golds per test point and, for surface-occupiers, as golds per test line intersection. Expected distributions are generated by randomly assigning gold particles to compartments and expressing observed/expected counts as a relative labelling index (RLI). Preferentially-labelled compartments are identified from their RLI values and by Chi-squared analysis of observed and expected distributions. For method 2, the raw gold particle counts distributed between compartments are simply compared across groups by contingency table and Chi-squared analysis. This identifies the main compartments responsible for the differences between group distributions. Finally, we discuss labelling efficiency (the number of gold particles per target molecule) and describe how it can be estimated for volume- or surface-occupiers by combining stereological data with biochemical determinations
    corecore