1,484 research outputs found

    Testing Variable Speed Induction Motor

    Get PDF

    Pure Stationary States of Open Quantum Systems

    Full text link
    Using Liouville space and superoperator formalism we consider pure stationary states of open and dissipative quantum systems. We discuss stationary states of open quantum systems, which coincide with stationary states of closed quantum systems. Open quantum systems with pure stationary states of linear oscillator are suggested. We consider stationary states for the Lindblad equation. We discuss bifurcations of pure stationary states for open quantum systems which are quantum analogs of classical dynamical bifurcations.Comment: 7p., REVTeX

    Bosonization, vicinal surfaces, and hydrodynamic fluctuation theory

    Full text link
    Through a Euclidean path integral we establish that the density fluctuations of a Fermi fluid in one dimension are related to vicinal surfaces and to the stochastic dynamics of particles interacting through long range forces with inverse distance decay. In the surface picture one easily obtains the Haldane relation and identifies the scaling exponents governing the low energy, Luttinger liquid behavior. For the stochastic particle model we develop a hydrodynamic fluctuation theory, through which in some cases the large distance Gaussian fluctuations are proved nonperturbatively

    Complementarity relation for irreversible process derived from stochastic energetics

    Full text link
    When the process of a system in contact with a heat bath is described by classical Langevin equation, the method of stochastic energetics [K. Sekimoto, J. Phys. Soc. Jpn. vol. 66 (1997) p.1234] enables to derive the form of Helmholtz free energy and the dissipation function of the system. We prove that the irreversible heat Q_irr and the time lapse $Delta t} of an isothermal process obey the complementarity relation, Q_irr {Delta t} >= k_B T S_min, where S_min depends on the initial and the final values of the control parameters, but it does not depend on the pathway between these values.Comment: 3 pages. LaTeX with 6 style macro

    Bethe anzats derivation of the Tracy-Widom distribution for one-dimensional directed polymers

    Full text link
    The distribution function of the free energy fluctuations in one-dimensional directed polymers with δ\delta-correlated random potential is studied by mapping the replicated problem to a many body quantum boson system with attractive interactions. Performing the summation over the entire spectrum of excited states the problem is reduced to the Fredholm determinant with the Airy kernel which is known to yield the Tracy-Widom distributionComment: 5 page

    Quantum transport through single-molecule junctions with orbital degeneracies

    Full text link
    We consider electronic transport through a single-molecule junction where the molecule has a degenerate spectrum. Unlike previous transport models, and theories a rate-equations description is no longer possible, and the quantum coherences between degenerate states have to be taken into account. We present the derivation and application of a master equation that describes the system in the weak-coupling limit and give an in-depth discussion of the parameter regimes and the new phenomena due to coherent on-site dynamics

    The No-Binding Regime of the Pauli-Fierz Model

    Full text link
    The Pauli-Fierz model H(α)H(\alpha) in nonrelativistic quantum electrodynamics is considered. The external potential VV is sufficiently shallow and the dipole approximation is assumed. It is proven that there exist constants 0<α<α+0<\alpha_-< \alpha_+ such that H(α)H(\alpha) has no ground state for α<α|\alpha|<\alpha_-, which complements an earlier result stating that there is a ground state for α>α+|\alpha| > \alpha_+. We develop a suitable extension of the Birman-Schwinger argument. Moreover for any given δ>0\delta>0 examples of potentials VV are provided such that α+α<δ\alpha_+-\alpha_-<\delta.Comment: 18 pages and 1 figur

    Time Evolution of Spin Waves

    Full text link
    A rigorous derivation of macroscopic spin-wave equations is demonstrated. We introduce a macroscopic mean-field limit and derive the so-called Landau-Lifshitz equations for spin waves. We first discuss the ferromagnetic Heisenberg model at T=0 and finally extend our analysis to general spin hamiltonians for the same class of ferromagnetic ground states.Comment: 4 pages, to appear in PR

    Hard rod gas with long-range interactions: Exact predictions for hydrodynamic properties of continuum systems from discrete models

    Get PDF
    One-dimensional hard rod gases are explicitly constructed as the limits of discrete systems: exclusion processes involving particles of arbitrary length. Those continuum many-body systems in general do not exhibit the same hydrodynamic properties as the underlying discrete models. Considering as examples a hard rod gas with additional long-range interaction and the generalized asymmetric exclusion process for extended particles (\ell-ASEP), it is shown how a correspondence between continuous and discrete systems must be established instead. This opens up a new possibility to exactly predict the hydrodynamic behaviour of this continuum system under Eulerian scaling by solving its discrete counterpart with analytical or numerical tools. As an illustration, simulations of the totally asymmetric exclusion process (\ell-TASEP) are compared to analytical solutions of the model and applied to the corresponding hard rod gas. The case of short-range interaction is treated separately.Comment: 19 pages, 8 figure
    corecore