5,653 research outputs found
Recommended from our members
Process Chain for Numerical Simulation of IMLS
Additive layer manufacturing methods imply, among other advantages, extensive flexibility
concerning their ability to realize mass customization. Despite various efforts towards process
enhancement, numerous deficiencies concerning part distortion or residual stresses are still
observable. The present work deals with the definition of an efficient process chain for
numerical simulation of indirect metal laser sintering (IMLS), in order to improve
dimensional accuracy. The underlying method is based on investigations of dilatometric behavior of iron based powder, which is integrated into reaction kinetic models and coupled
with a finite element analysis (FEA). Thus, singular process steps, e. g. solid phase sintering,
phase transformations or infiltration, are numerically modelled with adequate accuracy.
Referring to thermomechanical simulation, possibilities for pre-scaling of part geometries are
presented.Mechanical Engineerin
Insulator, semiclassical oscillations and quantum Hall liquids at low magnetic fields
Magneto-transport measurements are performed on two-dimensional GaAs electron
systems to probe the quantum Hall (QH) effect at low magnetic fields.
Oscillations following the Shubnikov-de Haas (SdH) formula are observed in the
transition from the insulator to QH liquid when the observed almost
temperature-independent Hall slope indicates insignificant interaction
correction. Our study shows that the existence of SdH oscillations in such a
transition can be understood based on the non-interacting model.Comment: 17 page
A mapping approach to synchronization in the "Zajfman trap": stability conditions and the synchronization mechanism
We present a two particle model to explain the mechanism that stabilizes a
bunch of positively charged ions in an "ion trap resonator" [Pedersen etal,
Phys. Rev. Lett. 87 (2001) 055001]. The model decomposes the motion of the two
ions into two mappings for the free motion in different parts of the trap and
one for a compressing momentum kick. The ions' interaction is modelled by a
time delay, which then changes the balance between adjacent momentum kicks.
Through these mappings we identify the microscopic process that is responsible
for synchronization and give the conditions for that regime.Comment: 12 pages, 9 figures; submitted to Phys Rev
Bound-to-bound and bound-to-continuum optical transitions in combined quantum dot - superlattice systems
By combining band gap engineering with the self-organized growth of quantum
dots, we present a scheme of adjusting the mid-infrared absorption properties
to desired energy transitions in quantum dot based photodetectors. Embedding
the self organized InAs quantum dots into an AlAs/GaAs superlattice enables us
to tune the optical transition energy by changing the superlattice period as
well as by changing the growth conditions of the dots. Using a one band
envelope function framework we are able, in a fully three dimensional
calculation, to predict the photocurrent spectra of these devices as well as
their polarization properties. The calculations further predict a strong impact
of the dots on the superlattices minibands. The impact of vertical dot
alignment or misalignment on the absorption properties of this dot/superlattice
structure is investigated. The observed photocurrent spectra of vertically
coupled quantum dot stacks show very good agreement with the calculations.In
these experiments, vertically coupled quantum dot stacks show the best
performance in the desired photodetector application.Comment: 8 pages, 10 figures, submitted to PR
Magnetic control of Coulomb scattering and terahertz transitions among excitons
Time-resolved terahertz quenching studies of the magnetoexcitonic
photoluminescence from GaAs/AlGaAs quantum wells are performed. A microscopic
theory is developed to analyze the experiments. Detailed experiment-theory
comparisons reveal a remarkable magnetic-field controllability of the Coulomb
and terahertz interactions in the excitonic system.Comment: 5 pages, 4 figure
Historical-institutionalist perspectives on the development of the EU budget system
The EU budget has only recently started to feature in theories of European integration. Studies typically adopt a historical-institutionalist framework, exploring notions such as path dependency. They have, however, generally been rather aggregated, or coarse-grained, in their approach. The EU budget has thus been treated as a single entity rather than a series of inter-linked institutions. This paper seeks to address these lacunae by adopting a fine-grained approach. This enables us to emphasize the connections that exist between EU budgetary institutions, in both time and space. We show that the initial set of budgetary institutions was unable, over time, to achieve consistently their treaty-based objectives. In response, rather than reform these institutions at potentially high political cost, additional institutions were layered on top of the extant structures. We thus demonstrate how some EU budgetary institutions have remained unchanged, whilst others have been added or changed over time
Recommended from our members
Coil combination of multichannel MRSI data at 7 T: MUSICAL
The goal of this study was to evaluate a new method of combining multi-channel 1H MRSI data by direct use of a matching imaging scan as a reference, rather than computing sensitivity maps. Seven healthy volunteers were measured on a 7-T MR scanner using a head coil with a 32-channel array coil for receive-only and a volume coil for receive/transmit. The accuracy of prediction of the phase of the 1H MRSI data with a fast imaging pre-scan was investigated with the volume coil. The array coil 1H MRSI data were combined using matching imaging data as coil combination weights. The signal-to-noise ratio (SNR), spectral quality, metabolic map quality and Cramér–Rao lower bounds were then compared with the data obtained by two standard methods, i.e. using sensitivity maps and the first free induction decay (FID) data point. Additional noise decorrelation was performed to further optimize the SNR gain. The new combination method improved significantly the SNR (+29%), overall spectral quality and visual appearance of metabolic maps, and lowered the Cramér–Rao lower bounds (−34%), compared with the combination method based on the first FID data point. The results were similar to those obtained by the combination method using sensitivity maps, but the new method increased the SNR slightly (+1.7%), decreased the algorithm complexity, required no reference coil and pre-phased all spectra correctly prior to spectral processing. Noise decorrelation further increased the SNR by 13%. The proposed method is a fast, robust and simple way to improve the coil combination in 1H MRSI of the human brain at 7 T, and could be extended to other 1H MRSI techniques. © 2013 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd
Recommended from our members
Prediction of long-term survival and coagulation factor VIII levels: interactions with gender in a large hospital-based cohort
- …
