15,706 research outputs found
Inhibition of interleukin-1 signaling enhances elimination of tyrosine kinase inhibitor treated CML stem cells
Treatment of chronic myelogenous leukemia (CML) with BCR-ABL tyrosine kinase inhibitors
(TKI) fails to eliminate leukemia stem cells (LSC). Patients remain at risk for relapse, and
additional approaches to deplete CML LSC are needed to enhance the possibility of
discontinuing TKI treatment. We have previously reported that expression of the pivotal proinflammatory
cytokine interleukin-1 (IL-1) is increased in CML bone marrow (BM). We show
here that CML LSC demonstrated increased expression of the IL-1 receptors, IL-1RAP and IL-
1R1, and enhanced sensitivity to IL-1-induced NF-KB signaling compared to normal stem cells.
Treatment with recombinant IL-1 receptor antagonist (IL-1RA) inhibited IL-1 signaling in CML
LSC and inhibited growth of CML LSC. Importantly, the combination of IL-1RA with TKI resulted
in significantly greater inhibition of CML LSC compared with TKI alone. Our studies also suggest
that IL-1 signaling contributes to overexpression of inflammatory mediators in CML LSC,
suggesting that blocking IL-1 signaling could modulate the inflammatory milieu. We conclude
that IL-1 signaling contributes to maintenance of CML LSC following TKI treatment, and that IL-
1 blockade with IL-1RA enhances elimination of TKI-treated CML LSC. These results provide a
strong rationale for further exploration of anti-IL-1 strategies to enhance LSC elimination in CML
Transport properties of graphene with one-dimensional charge defects
We study the effect of extended charge defects in electronic transport
properties of graphene. Extended defects are ubiquitous in chemically and
epitaxially grown graphene samples due to internal strains associated with the
lattice mismatch. We show that at low energies these defects interact quite
strongly with the 2D Dirac fermions and have an important effect in the
DC-conductivity of these materials.Comment: 6 pages, 5 figures. published version: one figure, appendix and
references adde
Structural study in Highly Compressed BiFeO3 Epitaxial Thin Films on YAlO3
We report a study on the thermodynamic stability and structure analysis of
the epitaxial BiFeO3 (BFO) thin films grown on YAlO3 (YAO) substrate. First we
observe a phase transition of MC-MA-T occurs in thin sample (<60 nm) with an
utter tetragonal-like phase (denoted as MII here) with a large c/a ratio
(~1.23). Specifically, MII phase transition process refers to the structural
evolution from a monoclinic MC structure at room temperature to a monoclinic MA
at higher temperature (150oC) and eventually to a presence of nearly tetragonal
structure above 275oC. This phase transition is further confirmed by the
piezoforce microscopy measurement, which shows the rotation of polarization
axis during the phase transition. A systematic study on structural evolution
with thickness to elucidate the impact of strain state is performed. We note
that the YAO substrate can serve as a felicitous base for growing T-like BFO
because this phase stably exists in very thick film. Thick BFO films grown on
YAO substrate exhibit a typical "morphotropic-phase-boundary"-like feature with
coexisting multiple phases (MII, MI, and R) and a periodic stripe-like
topography. A discrepancy of arrayed stripe morphology in different direction
on YAO substrate due to the anisotropic strain suggests a possibility to tune
the MPB-like region. Our study provides more insights to understand the strain
mediated phase co-existence in multiferroic BFO system.Comment: 18 pages, 6 figures, submitted to Journal of Applied Physic
Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles
Production of ammonia is currently realized by the Haber–Bosch process, while electrochemical N2 fixation under ambient conditions is recognized as a promising green substitution in the near future. A lack of efficient electrocatalysts remains the primary hurdle for the initiation of potential electrocatalytic synthesis of ammonia. For cheaper metals, such as copper, limited progress has been made to date. In this work, we boost the N2 reduction reaction catalytic activity of Cu nanoparticles, which originally exhibited negligible N2 reduction reaction activity, via a local electron depletion effect. The electron-deficient Cu nanoparticles are brought in a Schottky rectifying contact with a polyimide support which retards the hydrogen evolution reaction process in basic electrolytes and facilitates the electrochemical N2 reduction reaction process under ambient aqueous conditions. This strategy of inducing electron deficiency provides new insight into the rational design of inexpensive N2 reduction reaction catalysts with high selectivity and activity
Topological phase diagram and saddle point singularity in a tunable topological crystalline insulator
We report the evolution of the surface electronic structure and surface
material properties of a topological crystalline insulator (TCI) Pb1-xSnxSe as
a function of various material parameters including composition x, temperature
T and crystal structure. Our spectroscopic data demonstrate the electronic
groundstate condition for the saddle point singularity, the tunability of
surface chemical potential, and the surface states' response to circularly
polarized light. Our results show that each material parameter can tune the
system between trivial and topological phase in a distinct way unlike as seen
in Bi2Se3 and related compounds, leading to a rich and unique topological phase
diagram. Our systematic studies of the TCI Pb1-xSnxSe are valuable materials
guide to realize new topological phenomena.Comment: 10 pages, 7 figures. Expanded version of arXiv:1403.156
Superconductivity induced by Ni doping in BaFeAs
A series of 122 phase BaFeNiAs ( = 0, 0.055, 0.096, 0.18,
0.23) single crystals were grown by self flux method and a dome-like Ni doping
dependence of superconducting transition temperature is discovered. The
transition temperature reaches a maximum of 20.5 K at = 0.096,
and it drops to below 4 K as 0.23. The negative thermopower in the
normal state indicates that electron-like charge carrier indeed dominates in
this system. This Ni-doped system provides another example of superconductivity
induced by electron doping in the 122 phase.Comment: 7 pages, 5 figures, revised version, added EDX result, accepted for
special issue of NJ
The phase transition and the Quasi-Normal Modes of black Holes
We reexamined the argument that the quasinormal modes could be a probe of the
phase transition of a topological black hole to a hairy configuration by
investigating general scalar perturbations. We found further evidence in the
quasinormal modes for this phase transition. For the general black hole
configurations, we observed that although the quasinormal modes can present us
different phases of different configurations, there is no dramatic change in
the slope of quasinormal frequencies at the critical point of the phase
transition. More detailed studies of quasinormal modes are needed to reveal the
subtle behavior of the phase transition.Comment: Revised version, accepted for publication in JHE
Interlayer Exchange Coupling Mediated by Valence Band Electrons
The interlayer exchange coupling mediated by valence band electrons in
all-semiconductor IV-VI magnetic/nonmagnetic superlattices is studied
theoretically. A 3D tight-binding model, accounting for the band and magnetic
structure of the constituent superlattice components is used to calculate the
spin-dependent part of the total electronic energy. The antiferromagnetic
coupling between ferromagnetic layers in EuS/PbS superlattices is obtained, in
agreement with the experimental evidences. The results obtained for the
coupling between antiferromagnetic layers in EuTe/PbTe superlattices are also
presented.Comment: 8 pages, 6 figures, to be submitted to Phys.Rev.
Measurement of Neutrino-Electron Scattering Cross-Section with a CsI(Tl) Scintillating Crystal Array at the Kuo-Sheng Nuclear Power Reactor
The elastic scattering cross-section was measured with
a CsI(Tl) scintillating crystal array having a total mass of 187kg. The
detector was exposed to an average reactor flux of
at the Kuo-Sheng Nuclear Power
Station. The experimental design, conceptual merits, detector hardware, data
analysis and background understanding of the experiment are presented. Using
29882/7369 kg-days of Reactor ON/OFF data, the Standard Model(SM) electroweak
interaction was probed at the squared 4-momentum transfer range of . The ratio of experimental to SM cross-sections
of was measured. Constraints on
the electroweak parameters were placed, corresponding to a weak
mixing angle measurement of \s2tw = 0.251 \pm 0.031({\it stat}) \pm
0.024({\it sys}) . Destructive interference in the SM \nuebar -e process was
verified. Bounds on anomalous neutrino electromagnetic properties were placed:
neutrino magnetic moment at \mu_{\nuebar}< 2.2 \times 10^{-10} \mu_{\rm B}
and the neutrino charge radius at -2.1 \times 10^{-32} ~{\rm cm^{2}} <
\nuchrad < 3.3 \times 10^{-32} ~{\rm cm^{2}}, both at 90% confidence level.Comment: 18 Figures, 7 Tables; published version as V2 with minor revision
from V
- …
