1,931 research outputs found

    Research in interactive scene analysis

    Get PDF
    Cooperative (man-machine) scene analysis techniques were developed whereby humans can provide a computer with guidance when completely automated processing is infeasible. An interactive approach promises significant near-term payoffs in analyzing various types of high volume satellite imagery, as well as vehicle-based imagery used in robot planetary exploration. This report summarizes the work accomplished over the duration of the project and describes in detail three major accomplishments: (1) the interactive design of texture classifiers; (2) a new approach for integrating the segmentation and interpretation phases of scene analysis; and (3) the application of interactive scene analysis techniques to cartography

    Sum of Two Squares - Pair Correlation and Distribution in Short Intervals

    Full text link
    In this work we show that based on a conjecture for the pair correlation of integers representable as sums of two squares, which was first suggested by Connors and Keating and reformulated here, the second moment of the distribution of the number of representable integers in short intervals is consistent with a Poissonian distribution, where "short" means of length comparable to the mean spacing between sums of two squares. In addition we present a method for producing such conjectures through calculations in prime power residue rings and describe how these conjectures, as well as the above stated result, may by generalized to other binary quadratic forms. While producing these pair correlation conjectures we arrive at a surprising result regarding Mertens' formula for primes in arithmetic progressions, and in order to test the validity of the conjectures, we present numericalz computations which support our approach.Comment: 3 figure

    Generalization of the effective Wiener-Ikehara theorem

    Get PDF
    International audienceWe consider the classical Wiener–Ikehara Tauberian theorem, with a generalized condition of slow decrease and some additional poles on the boundary of convergence of the Laplace transform. In this generality, we prove the otherwise known asymptotic evaluation of the transformed function, when the usual conditions of the Wiener-Ikehara theorem hold. However, our version also provides an effective error term, not known thus far in this generality. The crux of the proof is a proper asymptotic variation of the lemmas of Ganelius and Tenenbaum, also constructed for the sake of an effective version of the Wiener–Ikehara theorem

    Modulated Floquet Topological Insulators

    Full text link
    Floquet topological insulators are topological phases of matter generated by the application of time-periodic perturbations on otherwise conventional insulators. We demonstrate that spatial variations in the time-periodic potential lead to localized quasi-stationary states in two-dimensional systems. These states include one-dimensional interface modes at the nodes of the external potential, and fractionalized excitations at vortices of the external potential. We also propose a setup by which light can induce currents in these systems. We explain these results by showing a close analogy to px+ipy superconductors

    Nulling Emittance Measurement Technique for CLIC Test Facility

    Get PDF
    In order to test the principle of Two-Beam-Acceleration (TBA), the CLIC Test Facility utilizes a high-intensity drive beam of 640 to 1000 nC to generate 30 GHz accelerating fields. To ensure that the beam is transported efficiently, a robust measurement of beam emittance and Twiss parameters is required. This is accomplished by measuring the beam size on a profile monitor, while scanning five or more upstream quadrupoles in such a fashion that the Twiss parameters at the profile monitor remain constant while the phase advance through the beam line changes. In this way the beam size can be sampled at different phases while a near-constant size is of such measurement devices, especially those associated with limited dynamic range. In addition, the beam size is explicitly constant for a matched beam, which provides a ``nulling'' measurement of the match. Details of the technique, simulations, and results of the measurements are discussed

    Beam Based Alignment of Interaction Region Magnets

    Full text link
    In conventional beam based alignment (BBA) procedures, the relative alignment of a quadrupole to a nearby beam position monitor is determined by finding a beam position in the quadrupole at which the closed orbit does not change when the quadrupole field is varied. The final focus magnets of the interaction regions (IR) of circular colliders often have some specialized properties that make it difficult to perform conventional beam based alignment procedures. At the HERA interaction points, for example, these properties are: (a) The quadrupoles are quite strong and long. Therefore a thin lens approximation is quite imprecise. (b) The effects of angular magnet offsets become significant. (c) The possibilities to steer the beam are limited as long as the alignment is not within specifications. (d) The beam orbit has design offsets and design angles with respect to the axis of the low-beta quadrupoles. (e) Often quadrupoles do not have a beam position monitor in their vicinity. Here we present a beam based alignment procedure that determines the relative offset of the closed orbit from a quadrupole center without requiring large orbit changes or monitors next to the quadrupole. Taking into account the alignment angle allows us to reduce the sensitivity to optical errors by one to two orders of magnitude. We also show how the BBA measurements of all IR quadrupoles can be used to determine the global position of the magnets. The sensitivity to errors of this method is evaluated and its applicability to HERA is shown

    Cohesion, team mental models, and collective efficacy: Towards an integrated framework of team dynamics in sport

    Get PDF
    A nomological network on team dynamics in sports consisting of a multi-framework perspective is introduced and tested. The aim was to explore the interrelationship among cohesion, team mental models (TMM), collective-efficacy (CE), and perceived performance potential (PPP). Three hundred and forty college-aged soccer players representing 17 different teams (8 female and 9 male) participated in the study. They responded to surveys on team cohesion, TMM, CE and PPP. Results are congruent with the theoretical conceptualization of a parsimonious view of team dynamics in sports. Specifically, cohesion was found to be an exogenous variable predicting both TMM and CE beliefs. TMM and CE were correlated and predicted PPP, which in turn accounted for 59% of the variance of objective performance scores as measured by teams’ season record. From a theoretical standpoint, findings resulted in a parsimonious view of team dynamics, which may represent an initial step towards clarifying the epistemological roots and nomological network of various team-level properties. From an applied standpoint, results suggest that team expertise starts with the establishment of team cohesion. Following the establishment of cohesiveness, teammates are able to advance team-related schemas and a collective sense of confidence. Limitations and key directions for future research are outlined

    Emittance Growth during Bunch Compression in the CTF-II

    Get PDF
    Measurements of the beam emittance during bunch compression in the CLIC Test Facility (CTF-II) are described. The measurements were made with different beam charges and different energy correlations versus the bunch compressor settings which were varied from no compression through the point of full compression and to over-compression. Significant increases in the beam emittance were observed with the maximum emittance occuring near the point of full (maximal) compression. Finally, evaluation of possible emittance dilution mechanisms indicate that coherent synchrotron radiation was the most likely cause
    corecore