366 research outputs found

    Calculations of 8^{8}He+p Elastic Cross Sections Using Microscopic Optical Potential

    Full text link
    An approach to calculate microscopic optical potential (OP) with the real part obtained by a folding procedure and with the imaginary part inherent in the high-energy approximation (HEA) is applied to study the 8^8He+p elastic scattering data at energies of tens of MeV/nucleon (MeV/N). The neutron and proton density distributions obtained in different models for 8^{8}He are utilized in the calculations of the differential cross sections. The role of the spin-orbit potential is studied. Comparison of the calculations with the available experimental data on the elastic scattering differential cross sections at beam energies of 15.7, 26.25, 32, 66 and 73 MeV/N is performed. The problem of the ambiguities of the depths of each component of the optical potential is considered by means of the imposed physical criterion related to the known behavior of the volume integrals as functions of the incident energy. It is shown also that the role of the surface absorption is rather important, in particular for the lowest incident energies (e.g., 15.7 and 26.25 MeV/nucleon).Comment: 11 pages, 7 figures, accepted for publication in Physical Review

    Three-body correlations in direct reactions: Example of 6^{6}Be populated in (p,n)(p,n) reaction

    Get PDF
    The 6^{6}Be continuum states were populated in the charge-exchange reaction 1^1H(6^{6}Li,6^{6}Be)nn collecting very high statistics data (5×106\sim 5 \times 10^6 events) on the three-body α\alpha+pp+pp correlations. The 6^{6}Be excitation energy region below 3\sim 3 MeV is considered, where the data are dominated by contributions from the 0+0^+ and 2+2^+ states. It is demonstrated how the high-statistics few-body correlation data can be used to extract detailed information on the reaction mechanism. Such a derivation is based on the fact that highly spin-aligned states are typically populated in the direct reactions.Comment: submitted to Physical Review

    Angular Momenta of Even-Even Fragments in the Neutronless Fission of 252^{252}Cf

    Get PDF
    The recent advent of experimental techniques in which the dynamical characteristics of fission fragments are determined more accurately, prompted us to investigate the angular momentum acquired by fragments in a model which describes the cold(neutronless) fission of 252^{252}Cf as the decay of a giant nuclear molecule. The molecular configuration is a consequence of the interplay between the attractive nuclear part and the repulsive Coulomb+nuclear forces. The basic ideea of the present approach is to separate the radial(fission) modes describing the decay of the molecule from the modes associated to transversal vibrations(bending) of the fragments. The distance between the centers of the two fragments is fixed by the requirement that the energy released in the fission reaction QQ, equals the sum of quantum zero-energies of radial and transversal modes and the total excitation energy EE^*. Using a semiclassical coupled channel formalism we computed the additional angular momenta acquired by the fragments during their post-scission motion, and found that the Coulomb excitation accounts for less than 10% of the final spins.Comment: 6 page

    Charge and matter distributions and form factors of light, medium and heavy neutron-rich nuclei

    Get PDF
    Results of charge form factors calculations for several unstable neutron-rich isotopes of light, medium and heavy nuclei (He, Li, Ni, Kr, Sn) are presented and compared to those of stable isotopes in the same isotopic chain. For the lighter isotopes (He and Li) the proton and neutron densities are obtained within a microscopic large-scale shell-model, while for heavier ones Ni, Kr and Sn the densities are calculated in deformed self-consistent mean-field Skyrme HF+BCS method. We also compare proton densities to matter densities together with their rms radii and diffuseness parameter values. Whenever possible comparison of form factors, densities and rms radii with available experimental data is also performed. Calculations of form factors are carried out both in plane wave Born approximation (PWBA) and in distorted wave Born approximation (DWBA). These form factors are suggested as predictions for the future experiments on the electron-radioactive beam colliders where the effect of the neutron halo or skin on the proton distributions in exotic nuclei is planned to be studied and thereby the various theoretical models of exotic nuclei will be tested.Comment: 26 pages, 11 figures, 3 tables, accepted for publication in Phys. Rev.

    New insight into the low-energy 9^9He spectrum

    Get PDF
    The spectrum of 9^9He was studied by means of the 8^8He(dd,pp)9^9He reaction at a lab energy of 25 MeV/n and small center of mass (c.m.) angles. Energy and angular correlations were obtained for the 9^9He decay products by complete kinematical reconstruction. The data do not show narrow states at \sim 1.3 and \sim 2.4 MeV reported before for 9^9He. The lowest resonant state of 9^9He is found at about 2 MeV with a width of \sim 2 MeV and is identified as 1/21/2^-. The observed angular correlation pattern is uniquely explained by the interference of the 1/21/2^- resonance with a virtual state 1/2+1/2^+ (limit on the scattering length is obtained as a>20a > -20 fm), and with the 5/2+5/2^+ resonance at energy 4.2\geq 4.2 MeV.Comment: 5 pages, 4 figures, 2 table

    10He low-lying states structure uncovered by correlations

    Full text link
    The 0+ ground state of the 10He nucleus produced in the 3H(8He,p)10He reaction was found at about 2.1±0.22.1\pm0.2 MeV (\Gamma ~ 2 MeV) above the three-body 8He+n+n breakup threshold. Angular correlations observed for 10He decay products show prominent interference patterns allowing to draw conclusions about the structure of low-energy excited states. We interpret the observed correlations as a coherent superposition of the broad 1- state having a maximum at energy 4-6 MeV and the 2+ state above 6 MeV, setting both on top of the 0+ state "tail". This anomalous level ordering indicates that the breakdown of the N=8 shell known in 12Be thus extends also to the 10He system.Comment: 5 pages, 5 figure

    MAYA: An active-target detector for binary reactions with exotic beams

    Get PDF
    International audienceWith recent improvements in the production of radioactive beams in facilities such as SPIRAL at GANIL, a larger area of the nuclear chart is now accessible for experimentation. For these usually low-intensity and low-energy secondary beams, we have developed the new MAYA detector based on the active-target concept. This device allows to use a relatively thick target without loss of resolution by using the detection gas as target material. Dedicated 3D tracking, particle identification, energy loss and range measurements allow complete kinematic reconstruction of reactions taking place inside MAYA

    Identification of new transitions and mass assignments of levels in 143153^{143-153}Pr

    Full text link
    The previously reported levels assigned to 151,152,153Pr have recently been called into question regarding their mass assignment. The above questioned level assignments are clarified by measuring g-transitions tagged with A and Z in an in-beam experiment in addition to the measurements from 252Cf spontaneous fission (SF) and establish new spectroscopic information from N=84N=84 to N=94N=94 in the Pr isotopic chain. The isotopic chain 143-153Pr has been studied from the spontaneous fission of 252Cf by using Gammasphere and also from the measurement of the prompt g-rays in coincidence with isotopically-identified fission fragments using VAMOS++ and EXOGAM at GANIL. The latter were produced using 238U beams on a 9Be target at energies around the Coulomb barrier. The g-g-g-g data from 252Cf (SF) and those from the GANIL in-beam A- and Z-gated spectra were combined to unambiguously assign the various transitions and levels in 151,152,153Pr and other isotopes. New transitions and bands in 145,147,148,149,150Pr were identified by using g-g-g and g-g-g-g coincidences and A and Z gated g-g spectra. The transitions and levels previously assigned to 151,153Pr have been confirmed by the (A,Z) gated spectra. The transitions previously assigned to 152Pr are now assigned to 151Pr on the basis of the (A,Z) gated spectra. Two new bands with 20 new transitions in 152Pr and one new band with 7 new transitions in 153Pr are identified from the g-g-g-g coincidence spectra and the (A,Z) gated spectrum. In addition, new g-rays are also reported in 143-146Pr. New levels of 145,147-153Pr have been established, reliable mass assignments of the levels in 151,152,153Pr have been reported and new transitions have been identified in 143-146Pr showing the new avenues that are opened by combining the two experimental approaches.Comment: Accepted in Phys. Rev.
    corecore