16,177 research outputs found
Superconducting correlations in ultra-small metallic grains
To describe the crossover from the bulk BCS superconductivity to a
fluctuation-dominated regime in ultrasmall metallic grains, new order
parameters and correlation functions, such as ``parity gap'' and ``pair-mixing
correlation function'', have been recently introduced. In this paper, we
discuss the small-grain behaviour of the Penrose-Onsager-Yang off-diagonal
long-range order (ODLRO) parameter in a pseudo-spin representation. Relations
between the ODLRO parameter and those mentioned above are established through
analytical and numerical calculations.Comment: 7 pages, 1 figur
Lossless Authentication Watermarking Based on Adaptive Modular Arithmetic
Reversible watermarking schemes based on modulo-256 addition may cause annoying salt-and-pepper noise. To avoid the salt-and-pepper noise, a reversible watermarking scheme using human visual perception characteristics and adaptive modular arithmetic is proposed. First, a high-bit residual image is obtained by extracting the most significant bits (MSB) of the original image, and a new spatial visual perception model is built according to the high-bit residual image features. Second, the watermark strength and the adaptive divisor of modulo operation for each pixel are determined by the visual perception model. Finally, the watermark is embedded into different least significant bits (LSB) of original image with adaptive modulo addition. The original image can be losslessly recovered if the stego-image has not been altered. Extensive experiments show that the proposed algorithm eliminates the salt-and-pepper noise effectively, and the visual quality of the stego-image with the proposed algorithm has been dramatically improved over some existing reversible watermarking algorithms. Especially, the stegoimage of this algorithm has about 9.9864 dB higher PSNR value than that of modulo-256 addition based reversible watermarking scheme
Learning human actions by combining global dynamics and local appearance
In this paper, we address the problem of human action recognition through combining global temporal dynamics and local visual spatio-temporal appearance features. For this purpose, in the global temporal dimension, we propose to model the motion dynamics with robust linear dynamical systems (LDSs) and use the model parameters as motion descriptors. Since LDSs live in a non-Euclidean space and the descriptors are in non-vector form, we propose a shift invariant subspace angles based distance to measure the similarity between LDSs. In the local visual dimension, we construct curved spatio-temporal cuboids along the trajectories of densely sampled feature points and describe them using histograms of oriented gradients (HOG). The distance between motion sequences is computed with the Chi-Squared histogram distance in the bag-of-words framework. Finally we perform classification using the maximum margin distance learning method by combining the global dynamic distances and the local visual distances. We evaluate our approach for action recognition on five short clips data sets, namely Weizmann, KTH, UCF sports, Hollywood2 and UCF50, as well as three long continuous data sets, namely VIRAT, ADL and CRIM13. We show competitive results as compared with current state-of-the-art methods
Quantification of the performance of iterative and non-iterative computational methods of locating partial discharges using RF measurement techniques
Partial discharge (PD) is an electrical discharge phenomenon that occurs when the insulation materialof high voltage equipment is subjected to high electric field stress. Its occurrence can be an indication ofincipient failure within power equipment such as power transformers, underground transmission cableor switchgear. Radio frequency measurement methods can be used to detect and locate discharge sourcesby measuring the propagated electromagnetic wave arising as a result of ionic charge acceleration. Anarray of at least four receiving antennas may be employed to detect any radiated discharge signals, thenthe three dimensional position of the discharge source can be calculated using different algorithms. These algorithms fall into two categories; iterative or non-iterative. This paper evaluates, through simulation, the location performance of an iterative method (the standardleast squares method) and a non-iterative method (the Bancroft algorithm). Simulations were carried outusing (i) a "Y" shaped antenna array and (ii) a square shaped antenna array, each consisting of a four-antennas. The results show that PD location accuracy is influenced by the algorithm's error bound, thenumber of iterations and the initial values for the iterative algorithms, as well as the antenna arrangement for both the non-iterative and iterative algorithms. Furthermore, this research proposes a novel approachfor selecting adequate error bounds and number of iterations using results of the non-iterative method, thus solving some of the iterative method dependencies
Charged and spin-excitation gaps in half-filled strongly correlated electron systems: A rigorous result
By exploiting the particle-hole symmetries of the Hubbard model, the periodic
Anderson model and the Kondo lattice model at half-filling and applying a
generalized version of Lieb's spin-reflection positivity method, we show that
the charged gaps of these models are always larger than their spin excitation
gaps. This theorem confirms the previous results derived by either the
variational approach or the density renormalization group approach.Comment: 20 pages, no figur
Recommended from our members
Ultrahigh power and energy density in partially ordered lithium-ion cathode materials
The rapid market growth of rechargeable batteries requires electrode materials that combine high power and energy and are made from earth-abundant elements. Here we show that combining a partial spinel-like cation order and substantial lithium excess enables both dense and fast energy storage. Cation overstoichiometry and the resulting partial order is used to eliminate the phase transitions typical of ordered spinels and enable a larger practical capacity, while lithium excess is synergistically used with fluorine substitution to create a high lithium mobility. With this strategy, we achieved specific energies greater than 1,100 Wh kg–1 and discharge rates up to 20 A g–1. Remarkably, the cathode materials thus obtained from inexpensive manganese present a rare case wherein an excellent rate capability coexists with a reversible oxygen redox activity. Our work shows the potential for designing cathode materials in the vast space between fully ordered and disordered compounds
Microstructure and Fe-vacancy ordering in the KFexSe2 superconducting system
Structural investigations by means of transmission electron microscopy (TEM)
on KFexSe2 with 1.5 \leq x \leq 1.8 have revealed a rich variety of
microstructure phenomena, the KFe1.5Se2 crystal often shows a superstructure
modulation along the [310] zone-axis direction, this superstructure can be well
interpreted by the Fe-vacancy order within the a-b plane. Increase of
Fe-concentration in the KFexSe2 materials could not only result in the
appearance of superconductivity but also yield clear alternations of
microstructure. Structural inhomogeneity, the complex superstructures and
defect structures in the superconducting KFe1.8Se2 sample have been
investigated based on the high-resolution TEM.Comment: 13 pages, 4 figure
Superconducting correlations in metallic nanoparticles: exact solution of the BCS model by the algebraic Bethe ansatz
Superconducting pairing of electrons in nanoscale metallic particles with
discrete energy levels and a fixed number of electrons is described by the
reduced BCS model Hamiltonian. We show that this model is integrable by the
algebraic Bethe ansatz. The eigenstates, spectrum, conserved operators,
integrals of motion, and norms of wave functions are obtained. Furthermore, the
quantum inverse problem is solved, meaning that form factors and correlation
functions can be explicitly evaluated. Closed form expressions are given for
the form factors that describe superconducting pairing.Comment: revised version, 5 pages, revtex, no figure
- …
