294 research outputs found
Transition to turbulence in particulate pipe flow
We investigate experimentally the influence of suspended particles on the
transition to turbulence. The particles are monodisperse and neutrally-buoyant
with the liquid. The role of the particles on the transition depends both upon
the pipe to particle diameter ratios and the concentration. For large
pipe-to-particle diameter ratios the transition is delayed while it is lowered
for small ratios. A scaling is proposed to collapse the departure from the
critical Reynolds number for pure fluid as a function of concentration into a
single master curve.Comment: 4 pages, 4 figure
Effects of non-denumerable fixed points in finite dynamical systems
The motion of a spinning football brings forth the possible existence of a
whole class of finite dynamical systems where there may be non-denumerably
infinite number of fixed points. They defy the very traditional meaning of the
fixed point that a point on the fixed point in the phase space should remain
there forever, for, a fixed point can evolve as well! Under such considerations
one can argue that a free-kicked football should be non-chaotic.Comment: This paper is a replaced version to modify the not-so-true claim,
made unknowingly in the earlier version, of being first to propose the
peculiar dynamical systems as described in the paper. With respect to the
original workers, we present here our original finding
Class of dilute granular Couette flows with uniform heat flux
In a recent paper [F. Vega Reyes et al., Phys. Rev. Lett. 104, 028001 (2010)]
we presented a preliminary description of a special class of steady Couette
flows in dilute granular gases. In all flows of this class the viscous heating
is exactly balanced by inelastic cooling. This yields a uniform heat flux and a
linear relationship between the local temperature and flow velocity. The class
(referred to as the LTu class) includes the Fourier flow of ordinary gases and
the simple shear flow of granular gases as special cases. In the present paper
we provide further support for this class of Couette flows by following four
different routes, two of them being theoretical (Grad's moment method of the
Boltzmann equation and exact solution of a kinetic model) and the other two
being computational (molecular dynamics and Monte Carlo simulations of the
Boltzmann equation). Comparison between theory and simulations shows a very
good agreement for the non-Newtonian rheological properties, even for quite
strong inelasticity, and a good agreement for the heat flux coefficients in the
case of Grad's method, the agreement being only qualitative in the case of the
kinetic model.Comment: 15 pages, 10 figures; v2: change of title plus some other minor
change
Rain, power laws, and advection
Localized rain events have been found to follow power-law size and duration
distributions over several decades, suggesting parallels between precipitation
and seismic activity [O. Peters et al., PRL 88, 018701 (2002)]. Similar power
laws are generated by treating rain as a passive tracer undergoing advection in
a velocity field generated by a two-dimensional system of point vortices.Comment: 7 pages, 4 figure
Simple Viscous Flows: from Boundary Layers to the Renormalization Group
The seemingly simple problem of determining the drag on a body moving through
a very viscous fluid has, for over 150 years, been a source of theoretical
confusion, mathematical paradoxes, and experimental artifacts, primarily
arising from the complex boundary layer structure of the flow near the body and
at infinity. We review the extensive experimental and theoretical literature on
this problem, with special emphasis on the logical relationship between
different approaches. The survey begins with the developments of matched
asymptotic expansions, and concludes with a discussion of perturbative
renormalization group techniques, adapted from quantum field theory to
differential equations. The renormalization group calculations lead to a new
prediction for the drag coefficient, one which can both reproduce and surpass
the results of matched asymptotics
Experiments on wave turbulence : the evolution and growth of second sound acoustic turbulence in superfluid 4He confirm self-similarity.
We report our experiments on the formation of second sound acoustic turbulence in superfluid 4He. The initial growth in spectral amplitude follows power laws that steepen rapidly with increasing harmonic number n, corresponding to a propagating front in frequency space. The lower growth exponents agree well with analytic predictions and numerical modeling. The observed increase in the formation delay with n validates the concept of selfsimilarity in the growth of wave turbulence
Starcounts Redivivus. IV. Density Laws Through Photometric Parallaxes
In an effort to more precisely define the spatial distribution of Galactic
field stars, we present an analysis of the photometric parallaxes of 70,000
stars covering nearly 15 square degrees in seven Kapteyn Selected Areas. We
address the affects of Malmquist Bias, subgiant/giant contamination,
metallicity and binary stars upon the derived density laws. The affect of
binary stars is the most significant. We find that while the disk-like
populations of the Milky Way are easily constrained in a simultaneous analysis
of all seven fields, no good simultaneous solution for the halo is found. We
have applied halo density laws taken from other studies and find that the
Besancon flattened power law halo model (c/a=0.6, r^-2.75) produces the best
fit to our data. With this halo, the thick disk has a scale height of 750 pc
with an 8.5% normalization to the old disk. The old disk scale height is
280-300 pc. Corrected for a binary fraction of 50%, these scale heights are 940
pc and 350-375 pc, respectively. Even with this model, there are systematic
discrepancies between the observed and predicted density distributions. Our
model produces density overpredictions in the inner Galaxy and density
underpredictions in the outer Galaxy. A possible solution is modeling the
stellar halo as a two-component system in which the halo has a flattened inner
distribution and a roughly spherical, but substructured outer distribution.
Further reconciliation could be provided by a flared thick disk, a structure
consistent with a merger origin for that population. (Abridged)Comment: 66 pages, accepted to Astrophysical journal, some figures compresse
Recommended from our members
Investigation and prediction of the bending of single and tandem pillars in a laminar cross flow
Cantilever beams are increasingly applied as sensory structures for force and flow measurements. In nature, such hair-like mechanoreceptors often occur not as single hairs but in larger numbers distributed around the body-surface and with different mechanical properties. In addition, reconfiguration of such structures with the flow changes their response and mutual interaction. This raises the question how it affects the signal conditioning on each individual sensor. Simple configurations involving single and tandem pairs of flexible cylinders (of aspect ratio 10) are studied as elementary units of such sensor arrays at Reynolds numbers of order Red=O(1–10). Experimental reference studies were carried out with a tandem pair of up-scaled models using flexible cylinders mounted on a flat plate and towed in a viscous liquid environment. Direct numerical simulations (DNS) are used to determine the local drag along the rigid cylinders (pillars) for different orientations of the tandem relative to the main flow direction at steady flow conditions. The bending is then computed via beam bending theory. A prediction model based on the cross-flow velocity and an empirical relation for the drag coefficient is proposed and tested. The results show good agreement of the bending lines with the experiments and the direct numerical simulations for single and tandem configurations. It is then used to illustrate the expected sensor response at any point in a given complex flow field. This study contributes to the understanding of pre-conditioning effects in a sensor array measuring near-wall flow
On the torque on birefringent plates induced by quantum fluctuations
We present detailed numerical calculations of the mechanical torque induced
by quantum fluctuations on two parallel birefringent plates with in plane
optical anisotropy, separated by either vacuum or a liquid (ethanol). The
torque is found to vary as , where represents the angle
between the two optical axes, and its magnitude rapidly increases with
decreasing plate separation . For a 40 m diameter disk, made out of
either quartz or calcite, kept parallel to a Barium Titanate plate at nm, the maximum torque (at ) is of the order of
Nm. We propose an experiment to observe this torque
when the Barium Titanate plate is immersed in ethanol and the other
birefringent disk is placed on top of it. In this case the retarded van der
Waals (or Casimir-Lifshitz) force between the two birefringent slabs is
repulsive. The disk would float parallel to the plate at a distance where its
net weight is counterbalanced by the retarded van der Waals repulsion, free to
rotate in response to very small driving torques.Comment: 7 figures, submitted to Phys. Rev.
Historic Light Curve and Long-term Optical Variation of BL Lacertae 2200+420
In this paper, historical optical(UBVRI) data and newly observed data from
the Yunnan Observatory of China(about100 years) are presented for BL Lacertae.
Maximum variations in UBVRI: 5.12, 5.31, 4.73, 2.59, and 2.54 and color indices
of U-B = -0.11 +/- 0.20, B-V= 1.0 +/- 0.11, V-R= 0.73 +/- 0.19, V-I= 1.42 +/-
0.25, R-I= 0.82 +/- 0.11, and B-I= 2.44 +/- 0.29 have been obtained from the
literature; The Jurkevich method is used to investigate the existence of
periods in the B band light curve, and a long-term period of 14 years is found.
The 0.6 and 0.88 year periods reported by Webb et al.(1988) are confirmed. In
addition, a close relation between B-I and B is found, suggesting that the
spectra flattens when the source brightens.Comment: 21 pages, 6 figures, 2 table, aasms4.sty, to be published in ApJ,
Vol. 507, 199
- …
