53 research outputs found
Well dispersed fractal aggregates as filler in polymer-silica nanocomposites: long range effects in rheology
We are presenting a new method of processing polystyrene-silica
nanocomposites, which results in a very well-defined dispersion of small
primary aggregates (assembly of 15 nanoparticles of 10 nm diameter) in the
matrix. The process is based on a high boiling point solvent, in which the
nanoparticles are well dispersed, and controlled evaporation. The filler's fine
network structure is determined over a wide range of sizes, using a combination
of Small Angle Neutron Scattering (SANS) and Transmission Electronic Microscopy
(TEM). The mechanical response of the nanocomposite material is investigated
both for small (ARES oscillatory shear and Dynamical Mechanical Analysis) and
large deformations (uniaxial traction), as a function of the concentration of
the particles. We can investigate the structure-property correlations for the
two main reinforcement effects: the filler network contribution, and a
filler-polymer matrix effect. Above a silica volume fraction threshold, we see
a divergence of the modulus correlated to the build up of a connected network.
Below the threshold, we obtain a new additional elastic contribution of much
longer terminal time than the matrix. Since aggregates are separated by at
least 60 nm, this new filler-matrix contribution cannot be described solely
with the concept of glassy layer (2nm)
Effects of a nanoscopic filler on the structure and dynamics of a simulated polymer melt and the relationship to ultra-thin films
We perform molecular dynamics simulations of an idealized polymer melt
surrounding a nanoscopic filler particle to probe the effects of a filler on
the local melt structure and dynamics. We show that the glass transition
temperature of the melt can be shifted to either higher or lower
temperatures by appropriately tuning the interactions between polymer and
filler. A gradual change of the polymer dynamics approaching the filler surface
causes the change in the glass transition. We also find that while the bulk
structure of the polymers changes little, the polymers close to the surface
tend to be elongated and flattened, independent of the type of interaction we
study. Consequently, the dynamics appear strongly influenced by the
interactions, while the melt structure is only altered by the geometric
constraints imposed by the presence of the filler. Our findings show a strong
similarity to those obtained for ultra-thin polymer films (thickness nm) suggesting that both ultra-thin films and filled-polymer systems might
be understood in the same context
A Microscopic Model for the Reinforcement and the Nonlinear Behavior of Filled Elastomers and Thermoplastic Elastomers (Payne and Mullins Effects)
Double Glass Transitions and Interfacial Immobilized Layer in in-Situ-Synthesized Poly(vinyl alcohol)/Silica Nanocomposites
Thermomechanical investigation of a thick film of aniline-formaldehyde copolymer and poly(methyl methacrylate)
- …
