2,505 research outputs found
Magneto-elastic coupling and competing entropy changes in substituted CoMnSi metamagnets
We use neutron diffraction, magnetometry and low temperature heat capacity to
probe giant magneto-elastic coupling in CoMnSi-based antiferromagnets and to
establish the origin of the entropy change that occurs at the metamagnetic
transition in such compounds. We find a large difference between the electronic
density of states of the antiferromagnetic and high magnetisation states. The
magnetic field-induced entropy change is composed of this contribution and a
significant counteracting lattice component, deduced from the presence of
negative magnetostriction. In calculating the electronic entropy change, we
note the importance of using an accurate model of the electronic density of
states, which here varies rapidly close to the Fermi energy.Comment: 11 pages, 9 figures. Figures 4 and 6 were updated in v2 of this
preprint. In v3, figures 1 and 2 have been updated, while Table II and the
abstract have been extended. In v4, Table I has updated with relevant neutron
diffraction dat
Using sources of opportunity to compensate for receiver mismatch in HF arrays
© 2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.The spatial processing performance of adaptive sensor arrays is often limited by the nonidentical frequency responses of the receivers in the array over the passband of interest. Addressed here is the problem of estimating digital compensation for mismatches between receiver passbands in high frequency (HF) antenna arrays using interference sources of opportunity. A mathematical model of ionospherically-propagated multipath HF interference is used to develop an adaptive algorithm which estimates the receiver frequency response corrections for each receiver. The effectiveness of the proposed algorithm is experimentally demonstrated and compared against (1) a commonly used least squares technique, and (2) a highly accurate calibration system using data collected by the receiving antenna array of the Jindalee over-the-horizon radar near Alice Springs in central AustraliaFabrizio, G.A.; Gray, D.A.; Turley, M.D
Production of intense, coherent, tunable narrow‐band lyman‐alpha radiation
Nearly transform limited pulses of 1216 Å radiation have been generated by sum frequency generation in 0.1 to 10 torr of mercury vapor. The summed input beams, consisting of photons at 3127 Å and 5454 Å originate in 1 MHz band‐width ring‐dye laser oscillators. The beams are amplified in pulsed‐dye amplifiers pumped by the frequency doubled output of a Nd:YAG laser. The 3127 Å photons are tuned to be resonant with the two‐photon 61S to 71S mercury transition. The VUV radiation can be tuned by varying the frequency of the third non‐resonant photon. We have also observed difference frequency generation at 2193 Å and intense fluorescence from the 61P state at 1849 Å. We have studied the intensity and linewidth dependence of the 1849 Å fluorescence and 1216 Å sum frequency signals on input beam intensity, mercury density, and buffer gas pressure and composition.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87716/2/49_1.pd
Landauer Theory, Inelastic Scattering and Electron Transport in Molecular Wires
In this paper we address the topic of inelastic electron scattering in
mesoscopic quantum transport. For systems where only elastic scattering is
present, Landauer theory provides an adequate description of transport that
relates the electronic current to single-particle transmission and reflection
probabilities. A formalism proposed recently by Bonca and Trugman facilitates
the calculation of the one-electron transmission and reflection probabilities
for inelastic processes in mesoscopic conductors connected to one-dimensional
ideal leads. Building on their work, we have developed a self-consistent
procedure for the evaluation of the non-equilibrium electron distributions in
ideal leads connecting such mesoscopic conductors to electron reservoirs at
finite temperatures and voltages. We evaluate the net electronic current
flowing through the mesoscopic device by utilizing these non-equilibrium
distributions. Our approach is a generalization of Landauer theory that takes
account of the Pauli exclusion principle for the various competing elastic and
inelastic processes while satisfying the requirement of particle conservation.
As an application we examine the influence of elastic and inelastic scattering
on conduction through a two site molecular wire with longitudinal phonons using
the Su-Schrieffer-Heeger model of electron-phonon coupling.Comment: 25 pages, 8 figure
Towards improved socio-economic assessments of ocean acidification’s impacts
Ocean acidification is increasingly recognized as a component of global change that could have a wide range of impacts on marine organisms, the ecosystems they live in, and the goods and services they provide humankind. Assessment of these potential socio-economic impacts requires integrated efforts between biologists, chemists, oceanographers, economists and social scientists. But because ocean acidification is a new research area, significant knowledge gaps are preventing economists from estimating its welfare impacts. For instance, economic data on the impact of ocean acidification on significant markets such as fisheries, aquaculture and tourism are very limited (if not non-existent), and non-market valuation studies on this topic are not yet available. Our paper summarizes the current understanding of future OA impacts and sets out what further information is required for economists to assess socio-economic impacts of ocean acidification. Our aim is to provide clear directions for multidisciplinary collaborative research
High-pressure melt curve of shock-compressed tin measured using pyrometry and reflectance techniques
We have developed a new technique to measure the melt curve of a shocked metal sample and have used it to measure the high-pressure solid-liquid phase boundary of tin from 10 to 30 GPa and 1000 to 1800 K. Tin was shock compressed by plate impact using a single-stage powder gun, and we made accurate, time-resolved radiance, reflectance, and velocimetry measurements at the interface of the tin sample and a lithium fluoride window. From these measurements, we determined temperature and pressure at the interface vs time. We then converted these data to temperature vs pressure curves and plotted them on the tin phase diagram. The tin sample was initially shocked into the high-pressure solid γ phase, and a subsequent release wave originating from the back of the impactor lowered the pressure at the interface along a constant entropy path (release isentrope). When the release isentrope reaches the solid-liquid phase boundary, melt begins and the isentrope follows the phase boundary to low pressure. The onset of melt is identified by a significant change in the slope of the temperature-pressure release isentrope. Following the onset of melt, we obtain a continuous and highly accurate melt curve measurement. The technique allows a measurement along the melt curve with a single radiance and reflectance experiment. The measured temperature data are compared to the published equation of state calculations. Our data agree well with some but not all of the published melt curve calculations, demonstrating that this technique has sufficient accuracy to assess the validity of a given equation of state model
Tuning a Resonance in the Fock Space: Optimization of Phonon Emission in a Resonant Tunneling Device
Phonon-assisted tunneling in a double barrier resonant tunneling device can
be seen as a resonance in the electron-phonon Fock space which is tuned by the
applied voltage. We show that the geometrical parameters can induce a symmetry
condition in this space that can strongly enhance the emission of longitudinal
optical phonons. For devices with thin emitter barriers this is achieved by a
wider collector's barrier.Comment: 4 pages, 3 figures. Figure 1 changed, typos correcte
Evaluation of range of motion restriction within the hip joint
In Total Hip Arthroplasty, determining the impingement free range of motion requirement is a complex task. This is because in the native hip, motion is restricted by both impingement as well as soft tissue restraint. The aim of this study is to determine a range of motion benchmark which can identify motions which are at risk from impingement and those which are constrained due to soft tissue. Two experimental methodologies were used to determine motions which were limited by impingement and those motions which were limited by both impingement and soft tissue restraint. By comparing these two experimental results, motions which were limited by impingement were able to be separated from those motions which were limited by soft tissue restraint. The results show motions in extension as well as flexion combined with adduction are limited by soft tissue restraint. Motions in flexion, flexion combined with abduction and adduction are at risk from osseous impingement. Consequently, these motions represent where the maximum likely damage will occur in femoroacetabular impingement or at most risk of prosthetic impingement in Total Hip Arthroplasty
Fermi liquid to Luttinger liquid transition at the edge of a two-dimensional electron gas
We present experimental results on the tunneling into the edge of a two
dimensional electron gas (2DEG) obtained with a GaAs/AlGaAs cleaved edge
overgrown structure in a strong perpendicular magnetic field. While the 2DEG
exhibits typical fractional quantum Hall features of a very high mobility
sample, we observe the onset of a non-linear current-voltage characteristic in
the vicinity of nu=1. For filling factor nu<1 the system is consistent with a
non-Fermi liquid behavior, such as a Luttinger liquid, whereas for nu>1 we
observe an Ohmic tunneling resistance between the edge and a three dimensional
contact, typical for a Fermi liquid. Hence, at the edge, there is a transition
from a Luttinger liquid to a Fermi liquid. Finally, we show that the Luttinger
liquid exponent at a given filling factor is not universal but depends on
sample parameters.Comment: 4 pages, 4 figure
The Royal Society Climate Updates: What have we learnt since the IPCC 5th Assessment Report?
Climate has a huge influence on the way we live. For example, it affects the crops we can grow and the diseases we might encounter in particular locations. It also determines the physical infrastructure we need to build to survive comfortably in the face of extremes of heat, cold, drought and flood.
Human emissions of carbon dioxide and other greenhouse gases have changed the composition of the atmosphere over the last two centuries. This is expected to take Earth’s climate out of the relatively stable range that has characterised the last few thousand years, during which human society has emerged. Measurements of ice cores and sea-floor sediments show that the current concentration of carbon dioxide, at just over 400 parts per million, has not been experienced for at least three million years. This causes more of the heat from the Sun to be retained on Earth, warming the atmosphere and ocean. The global average of atmospheric temperature has so far risen by about 1˚C compared to the late 19th century, with further increases expected dependent on the trajectory of carbon dioxide emissions in the next few decades.
In 2013 and 2014 the Intergovernmental Panel on Climate Change (IPCC) published its fifth assessment report (AR5) assessing the evidence about climate change and its impacts. This assessment considered data from observations and records of the past. It then assessed future changes and impacts based on various scenarios for emissions of greenhouse gases and other anthropogenic factors. In 2015, almost every nation in
the world agreed (in the so-called Paris Agreement) to the challenging goal of keeping global average warming to well below 2°C above pre-industrial temperatures while pursuing efforts to limit it to 1.5°C. With the next assessment report (AR6) not due until 2022, it is timely to consider how evidence presented since the publication of AR5 affects the assessments made then.
The Earth’s climate is a complex system. To understand it, and the impact that climate change will have, requires many different kinds of study. Climate science consists of theory, observation and modelling. Theory begins with well-established scientific principles, seeks to understand processes occurring over a range of spatial and temporal scales and provides the basis for models. Observation includes long time series of careful measurements, recent data from satellites, and studies of past climate using archives such as tree rings, ice cores and marine sediments. It also encompasses laboratory and field experiments designed to test and enhance understanding of processes. Computer models of the Earth climate system use theory, calibrated and validated by the observations, to calculate the result of future changes. There are nevertheless uncertainties in estimating future climate. Firstly the course of climate change is dependent on what socioeconomic, political and energy paths society takes. Secondly there remain inevitable uncertainties induced for example by variability in the interactions between different parts of the Earth system and by processes, such as cloud formation, that occur at too small a scale to incorporate precisely in global models.
Assessments such as those of the IPCC describe the state of knowledge at a particular time, and also highlight areas where more research is needed. We are still exploring and improving our understanding of many of the processes within the climate system, but, on the whole, new research confirms the main ideas underpinning climate research, while refining knowledge, so as to reduce the uncertainty in the magnitude and extent of crucial impacts
- …
