59 research outputs found

    Дегазация нефти, вертикальный сепаратор, предохранительный клапан

    Get PDF

    Global tracking of marine megafauna space use reveals how to achieve conservation targets

    Get PDF
    The recent Kunming-Montreal Global Biodiversity Framework (GBF) sets ambitious goals but no clear pathway for how zero loss of important biodiversity areas and halting human-induced extinction of threatened species will be achieved. We assembled a multi-taxa tracking dataset (11 million geopositions from 15,845 tracked individuals across 121 species) to provide a global assessment of space use of highly mobile marine megafauna, showing that 63% of the area that they cover is used 80% of the time as important migratory corridors or residence areas. The GBF 30% threshold (Target 3) will be insufficient for marine megafauna’s effective conservation, leaving important areas exposed to major anthropogenic threats. Coupling area protection with mitigation strategies (e.g., fishing regulation, wildlife-traffic separation) will be essential to reach international goals and conserve biodiversity

    Global tracking of marine megafauna space use reveals how to achieve conservation targets

    Get PDF
    The recent Kunming-Montreal Global Biodiversity Framework (GBF) sets ambitious goals but no clear pathway for how zero loss of important biodiversity areas and halting human-induced extinction of threatened species will be achieved. We assembled a multi-taxa tracking dataset (11 million geopositions from 15,845 tracked individuals across 121 species) to provide a global assessment of space use of highly mobile marine megafauna, showing that 63% of the area that they cover is used 80% of the time as important migratory corridors or residence areas. The GBF 30% threshold (Target 3) will be insufficient for marine megafauna’s effective conservation, leaving important areas exposed to major anthropogenic threats. Coupling area protection with mitigation strategies (e.g., fishing regulation, wildlife-traffic separation) will be essential to reach international goals and conserve biodiversity.</p

    Vulnerability of marine megafauna to global at‐sea anthropogenic threats

    Get PDF
    Marine megafauna species are affected by a wide range of anthropogenic threats. To evaluate the risk of such threats, species’ vulnerability to each threat must first be determined. We build on the existing threats classification scheme and ranking system of the International Union for Conservation of Nature (IUCN) Red List of Threatened Species by assessing the vulnerability of 256 marine megafauna species to 23 at‐sea threats. The threats we considered included individual fishing gear types, climate‐change‐related subthreats not previously assessed, and threats associated with coastal impacts and maritime disturbances. Our ratings resulted in 70 species having high vulnerability (v > 0.778 out of 1) to at least 1 threat, primarily drifting longlines, temperature extremes, or fixed gear. These 3 threats were also considered to have the most severe effects (i.e., steepest population declines). Overall, temperature extremes and plastics and other solid waste were rated as affecting the largest proportion of populations. Penguins, pinnipeds, and polar bears had the highest vulnerability to temperature extremes. Bony fishes had the highest vulnerability to drifting longlines and plastics and other solid waste; pelagic cetaceans to 4 maritime disturbance threats; elasmobranchs to 5 fishing threats; and flying birds to drifting longlines and 2 maritime disturbance threats. Sirenians and turtles had the highest vulnerability to at least one threat from all 4 categories. Despite not necessarily having severe effects for most taxonomic groups, temperature extremes were rated among the top threats for all taxa except bony fishes. The vulnerability scores we provide are an important first step in estimating the risk of threats to marine megafauna. Importantly, they help differentiate scope from severity, which is key to identifying threats that should be prioritized for mitigation

    Global tracking of marine megafauna space use reveals how to achieve conservation targets

    Get PDF
    The recent Kunming-Montreal Global Biodiversity Framework (GBF) sets ambitious goals but no clear pathway for how zero loss of important biodiversity areas and halting human-induced extinction of threatened species will be achieved. We assembled a multi-taxa tracking dataset (11 million geopositions from 15,845 tracked individuals across 121 species) to provide a global assessment of space use of highly mobile marine megafauna, showing that 63% of the area that they cover is used 80% of the time as important migratory corridors or residence areas. The GBF 30% threshold (Target 3) will be insufficient for marine megafauna’s effective conservation, leaving important areas exposed to major anthropogenic threats. Coupling area protection with mitigation strategies (e.g., fishing regulation, wildlife-traffic separation) will be essential to reach international goals and conserve biodiversity

    Lysosomal membrane permeabilization in cell death

    Get PDF
    18 páginas, 3 figuras, 2 tablas -- PAGS nros. 6434-6451Mitochondrial outer membrane permeabilization (MOMP) constitutes one of the major checkpoint(s) of apoptotic and necrotic cell death. Recently, the permeabilization of yet another organelle, the lysosome, has been shown to initiate a cell death pathway, in specific circumstances. Lysosomal membrane permeabilization (LMP) causes the release of cathepsins and other hydrolases from the lysosomal lumen to the cytosol. LMP is induced by a plethora of distinct stimuli including reactive oxygen species, lysosomotropic compounds with detergent activity, as well as some endogenous cell death effectors such as Bax. LMP is a potentially lethal event because the ectopic presence of lysosomal proteases in the cytosol causes digestion of vital proteins and the activation of additional hydrolases including caspases. This latter process is usually mediated indirectly, through a cascade in which LMP causes the proteolytic activation of Bid (which is cleaved by the two lysosomal cathepsins B and D), which then induces MOMP, resulting in cytochrome c release and apoptosome-dependent caspase activation. However, massive LMP often results in cell death without caspase activation; this cell death may adopt a subapoptotic or necrotic appearance. The regulation of LMP is perturbed in cancer cells, suggesting that specific strategies for LMP induction might lead to novel therapeutic avenuesResearch in our labs is supported by grants from Ministry of Science (BFU-2006-00508) and from Fundación La Caixa (BM06-125-1) to PB and Ligue Nationale contre le Cancer (Equipe labellisée), European Commission (Active p53, Apo-Sys, RIGHT, TransDeath, ChemoRes, DeathTrain), Agence Nationale pour la Recherche, Institut National contre le Cancer, Cancéropôle Ile-de-France and Fondation pour la Recherche Médicale to GKPeer reviewe

    The geometry of ICRF - Induced wave-SOL Interaction

    No full text
    International audienceAs part of ITPA-IOS activities, this contribution reviews recent experimental characterization of ICRF-induced SOL modifications on various tokamaks worldwide and on the LArge Plasma Device (LAPD) at UCLA. The phenomenology, as observed using a large variety of measurement techniques, is consistent with the expectations from RF-sheath rectification. Emphasis is put on the complex 3D spatial structure of RF-SOL interaction, in relation to the magnetic topology and the spatial distribution of RF currents over the metallic structures. Dependence on the local plasmaparameters in the antenna vicinity is also briefly addressed. The final part discusses implications for future devices
    corecore