16,205 research outputs found
Estresse de água na planta e o teor de clorofila da folha milho irrigado para recomendação de nitrogênio em cobertura.
Alteração na porcentagem de clorofila na folha de milho após a aplicação de nitrogênio em cobertura.
Evaluation of be-38 percent al alloy final report, 27 jun. 1964 - 28 feb. 1965
Mechanical properties, microstructural features, and general metallurgical quality of beryllium- aluminum allo
Diffusive transport in networks built of containers and tubes
We developed analytical and numerical methods to study a transport of
non-interacting particles in large networks consisting of M d-dimensional
containers C_1,...,C_M with radii R_i linked together by tubes of length l_{ij}
and radii a_{ij} where i,j=1,2,...,M. Tubes may join directly with each other
forming junctions. It is possible that some links are absent. Instead of
solving the diffusion equation for the full problem we formulated an approach
that is computationally more efficient. We derived a set of rate equations that
govern the time dependence of the number of particles in each container
N_1(t),N_2(t),...,N_M(t). In such a way the complicated transport problem is
reduced to a set of M first order integro-differential equations in time, which
can be solved efficiently by the algorithm presented here. The workings of the
method have been demonstrated on a couple of examples: networks involving
three, four and seven containers, and one network with a three-point junction.
Already simple networks with relatively few containers exhibit interesting
transport behavior. For example, we showed that it is possible to adjust the
geometry of the networks so that the particle concentration varies in time in a
wave-like manner. Such behavior deviates from simple exponential growth and
decay occurring in the two container system.Comment: 21 pages, 18 figures, REVTEX4; new figure added, reduced emphasis on
graph theory, additional discussion added (computational cost, one
dimensional tubes
Neutron star glitches have a substantial minimum size
Glitches are sudden spin-up events that punctuate the steady spin down of
pulsars and are thought to be due to the presence of a superfluid component
within neutron stars. The precise glitch mechanism and its trigger, however,
remain unknown. The size of glitches is a key diagnostic for models of the
underlying physics. While the largest glitches have long been taken into
account by theoretical models, it has always been assumed that the minimum size
lay below the detectability limit of the measurements. In this paper we define
general glitch detectability limits and use them on 29 years of daily
observations of the Crab pulsar, carried out at Jodrell Bank Observatory. We
find that all glitches lie well above the detectability limits and by using an
automated method to search for small events we are able to uncover the full
glitch size distribution, with no biases. Contrary to the prediction of most
models, the distribution presents a rapid decrease of the number of glitches
below ~0.05 Hz. This substantial minimum size indicates that a glitch must
involve the motion of at least several billion superfluid vortices and provides
an extra observable which can greatly help the identification of the trigger
mechanism. Our study also shows that glitches are clearly separated from all
the other rotation irregularities. This supports the idea that the origin of
glitches is different to that of timing noise, which comprises the unmodelled
random fluctuations in the rotation rates of pulsars.Comment: 8 pages; 4 figures. Accepted for publication in MNRA
Binary evolution with LOFT
This is a White Paper in support of the mission concept of the Large
Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We
discuss the potential of LOFT for the study of very faint X-ray binaries,
orbital period distribution of black hole X-ray binaries and neutron star spin
up. For a summary, we refer to the paper.Comment: White Paper in Support of the Mission Concept of the Large
Observatory for X-ray Timing. (v2 few typos corrected
Applications of graphics to support a testbed for autonomous space vehicle operations
Researchers describe their experience using graphics tools and utilities while building an application, AUTOPS, that uses a graphical Machintosh (TM)-like interface for the input and display of data, and animation graphics to enhance the presentation of results of autonomous space vehicle operations simulations. AUTOPS is a test bed for evaluating decisions for intelligent control systems for autonomous vehicles. Decisions made by an intelligent control system, e.g., a revised mission plan, might be displayed to the user in textual format or he can witness the effects of those decisions via out of window graphics animations. Although a textual description conveys essentials, a graphics animation conveys the replanning results in a more convincing way. Similarily, iconic and menu-driven screen interfaces provide the user with more meaningful options and displays. Presented here are experiences with the SunView and TAE Plus graphics tools used for interface design, and the Johnson Space Center Interactive Graphics Laboratory animation graphics tools used for generating out out of the window graphics
Charges on Strange Quark Nuggets in Space
Since Witten's seminal 1984 paper on the subject, searches for evidence of
strange quark nuggets (SQNs) have proven unsuccessful. In the absence of
experimental evidence ruling out SQNs, the validity of theories introducing
mechanisms that increase their stability should continue to be tested. To
stimulate electromagnetic SQN searches, particularly space searches, we
estimate the net charge that would develop on an SQN in space exposed to
various radiation baths (and showers) capable of liberating their less strongly
bound electrons, taking into account recombination with ambient electrons. We
consider, in particular, the cosmic background radiation, radiation from the
sun, and diffuse galactic and extragalactic -ray backgrounds. A
possible dramatic signal of SQNs in explosive astrophysical events is noted.Comment: CitationS added, new subsection added, more discussion, same
numerical result
Extreme fluctuations in noisy task-completion landscapes on scale-free networks
We study the statistics and scaling of extreme fluctuations in noisy
task-completion landscapes, such as those emerging in synchronized
distributed-computing networks, or generic causally-constrained queuing
networks, with scale-free topology. In these networks the average size of the
fluctuations becomes finite (synchronized state) and the extreme fluctuations
typically diverge only logarithmically in the large system-size limit ensuring
synchronization in a practical sense. Provided that local fluctuations in the
network are short-tailed, the statistics of the extremes are governed by the
Gumbel distribution. We present large-scale simulation results using the exact
algorithmic rules, supported by mean-field arguments based on a coarse-grained
description.Comment: 16 pages, 6 figures, revte
The Dynamics of Internet Traffic: Self-Similarity, Self-Organization, and Complex Phenomena
The Internet is the most complex system ever created in human history.
Therefore, its dynamics and traffic unsurprisingly take on a rich variety of
complex dynamics, self-organization, and other phenomena that have been
researched for years. This paper is a review of the complex dynamics of
Internet traffic. Departing from normal treatises, we will take a view from
both the network engineering and physics perspectives showing the strengths and
weaknesses as well as insights of both. In addition, many less covered
phenomena such as traffic oscillations, large-scale effects of worm traffic,
and comparisons of the Internet and biological models will be covered.Comment: 63 pages, 7 figures, 7 tables, submitted to Advances in Complex
System
- …
